Study of the reaction pi- p --> omega n at 3, 8, 6 and 8 GeV/c

Apel, W.D. ; Ausländer, J. ; Müller, H. ; et al.
Phys.Lett.B 55 (1975) 111-116, 1975.
Inspire Record 1388800 DOI 10.17182/hepdata.27881

Results are given for the production differential cross sections and the ω decay angular distribution in terms of the ω spin density matrix elements.

3 data tables

PAPER ALSO GIVES OFF-DIAGONAL ELEMENTS OF THE ERROR COVARIANCE MATRIX.

PAPER ALSO GIVES OFF-DIAGONAL ELEMENTS OF THE ERROR COVARIANCE MATRIX.

No description provided.


VECTOR MESON PRODUCTION IN HYPERCHARGE EXCHANGE REACTIONS AT 7-GeV/c AND 11.5-GeV/c

Ballam, Joseph ; Brau, J. ; Bouchez, J. ; et al.
Nucl.Phys.B 166 (1980) 189-206, 1980.
Inspire Record 143136 DOI 10.17182/hepdata.34582

Results are presented on vector meson production in the hypercharge exchange reactions: π + p → K ∗+ (890) Y + and K − p→ ρ − Y + where Y + is either Σ + or Y ∗+ (1385). These reactions have been studied at 7 GeV/ c and 11.5 GeV/ c using the SLAC Hybrid Facility. Total and differential cross sections, hyperon polarization, and vector meson decay angular distributions are presented. We find that reactions with Σ + production are dominated by natural parity exchange. The Y ∗ (1385) reactions are consistent with substantial natural parity exchange contributions but also show significant unnatural parity exchange. The differential cross sections and polarization measurements for the vector meson production are compared to the pseudoscalar production reactions.

7 data tables

Axis error includes +- 20/20 contribution.

Axis error includes +- 20/20 contribution.

Axis error includes +- 20/20 contribution.

More…

Omega Production in the Reaction pi- p --> pi+ pi- pi0 n at 8-GeV/c and 12-GeV/c

Dowell, J.D. ; Garvey, J. ; Jobes, M. ; et al.
Nucl.Phys.B 108 (1976) 30-44, 1976.
Inspire Record 100856 DOI 10.17182/hepdata.35781

The reaction π − p → ω n has been studied at 8 and 12 GeV / c incident momenta with the CERN Omega spectrometer using a neutron time of flight trigger. The differential cross sections and the ω-decay density matrix elements are presented as functions of the momentum transfer squared − t in the range of 0.02 to 0.80 GeV 2 . The data are used to evaluate the intercept and slope of both the natural and unnatural parity exchange trajectories. Regge exchange amplitude factorisation tests involving the reaction π N → ω N are investigated.

3 data tables

No description provided.

'FIT'.

'FIT'.


A Comparative Investigation of Low Mass (pi+ omega) and (K- omega) Systems at Various Energies

The Aachen-Berlin-Bonn-CERN-Heidelberg-London-Vienna collaboration Otter, G. ; Becker, L ; Dornan, P J ; et al.
Nucl.Phys.B 87 (1975) 189-206, 1975.
Inspire Record 91251 DOI 10.17182/hepdata.32066

A comparison is made of the properties and production mechanisms of the π + ω and K − ω systems produced in the reactions π + p → π + ω p at 4, 5, 8 and 16 GeV/ c and K − p → K − ω p at 10 and 16 GeV/ c . In the π + ω case apeak is observed at 1.23 GeV (the B meson), while the K − ω mass distribution has a threshold enhancement. The cross section of the low mass (<2.0 GeV) π + ω system falls as p lab −2 , while that of the low mass (<2.0 GeV) K − ω system is almost constant with energy, indicating diffractive production of the K − ω system, but not of the πω system. Using a modified version of the Illinois partial-wave analysis program, it is found that the K − ω system is dominantly produced in the J P = 1 + state with small contributions of 0 − and 2 + , mainly by natural parity exchange - as is found for reactions such as K − p → (K − π + π − )p which are predominantly diffractive. For the π + ω system in the B mass region, J P = 1 + states, produced mainly by natural parity exchange are found; the contributions of 0 − P, 1 − P, 2 − P and 2 + D are consistent with zero. The 1 + D state occurs in the π + ω case but not in the K − ω system, nor in the K ππ − system produced in the K − p → K ππ p reaction.

4 data tables

No description provided.

No description provided.

FROM BREIT-WIGNER FIT TO B EVENTS AND CORRECTED FOR UNSEEN OMEGA DECAY MODES.

More…