A Determination of alpha-s (M (Z0)) at LEP using resummed QCD calculations

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 59 (1993) 1-20, 1993.
Inspire Record 354188 DOI 10.17182/hepdata.14427

The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio

7 data tables match query

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

More…

Distributions of Topological Observables in Inclusive Three- and Four-Jet Events in pp Collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 302, 2015.
Inspire Record 1345159 DOI 10.17182/hepdata.75115

This paper presents distributions of topological observables in inclusive three- and four-jet events produced in pp collisions at a centre-of-mass energy of 7 TeV with a data sample collected by the CMS experiment corresponding to a luminosity of 5.1 inverse femtobarns. The distributions are corrected for detector effects, and compared with several event generators based on two- and multi-parton matrix elements at leading order. Among the considered calculations, MADGRAPH interfaced with PYTHIA6 displays the best overall agreement with data.

12 data tables match query

CORRECTED NORMALIZED DISTRIBUTION OF THREE-JET MASS IN THE INCLUSIVE THREE-JET SAMPLE. THE PROVIDED UNCERTAINTY CORRESPONDS TO SYSTEMATIC UNCERTAINTY.

CORRECTED NORMALIZED DISTRIBUTION OF SCALED ENERGY OF THE LEADING-JET IN THE INCLUSIVE THREE-JET SAMPLE. THE PROVIDED UNCERTAINTY CORRESPONDS TO SYSTEMATIC UNCERTAINTY.

CORRECTED NORMALIZED DISTRIBUTION OF SCALED ENERGY OF THE SECOND-LEADING-JET IN THE INCLUSIVE THREE-JET SAMPLE. THE PROVIDED UNCERTAINTY CORRESPONDS TO SYSTEMATIC UNCERTAINTY.

More…

Search for heavy long-lived charged $R$-hadrons with the ATLAS detector in 3.2 fb$^{-1}$ of proton--proton collision data at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 760 (2016) 647-665, 2016.
Inspire Record 1470936 DOI 10.17182/hepdata.73717

A search for heavy long-lived charged $R$-hadrons is reported using a data sample corresponding to 3.2$^{-1}$ of proton--proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived $R$-hadrons in the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.

12 data tables match query

Distributions of beta for data and simulation after a Zmumu selection. The values given for the mean and width are taken from Gaussian functions matched to data and simulation.

Data (black dots) and background estimates (red solid line) for m_beta for the gluino R-hadron search (1000 GeV). The green shaded band illustrates the statistical uncertainty of the background estimate. The blue dashed lines illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical lines at 500 GeV show the mass selection and the last bin includes all entries/masses above.

Data (black dots) and background estimates (red solid line) for m_betagamma for the gluino R-hadron search (1000 GeV). The green shaded band illustrates the statistical uncertainty of the background estimate. The blue dashed lines illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical lines at 500 GeV show the mass selection and the last bin includes all entries/masses above.

More…

QCD studies with e+ e- annihilation data at 130-GeV and 136-GeV.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 72 (1996) 191-206, 1996.
Inspire Record 418007 DOI 10.17182/hepdata.47564

We have studied hadronic events produced at LEP at centre-of-mass energies of 130 and 136 GeV. Distributions of event shape observables, jet rates, momentum spectra and multiplicities are presented and compared to the predictions of several Monte Carlo models and analytic QCD calculations. From fits of event shape and jet rate distributions to\({\mathcal{O}}(\alpha _s^2 ) + NLLA\) QCD calculations, we determineαs(133 GeV)=0.110±0.005(stat.)±0.009(syst.). We measure the mean charged particle multiplicity 〈nch〉=23.40±0.45(stat.) ±0.47(syst.) and the position ζ0 of the peak in the ζp = ln(1/xp) distribution ζ0=3.94±0.05(stat.)±0.11(syst.). These results are compared to lower energy data and to analytic QCD or Monte Carlo predictions for their energy evolution.

23 data tables match query

Determination of alpha_s.

Multiplicity and high moments.

Tmajor distribution.

More…

Jet Fragmentation and {QCD} Models in $e^+ e^-$ Annihilation at $c$.m. Energies Between 12-{GeV} and 41.5-{GeV}

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 41 (1988) 359-373, 1988.
Inspire Record 263859 DOI 10.17182/hepdata.15531

The large amount of data accumulated by the TASSO detector at 35 GeV c.m. energy has been compared with the predictions of the latest generation of perturbative QCD+fragmentation models. By adjustment of the arbitrary parameters of these models, a very good description of the global properties of hadronic events was obtained. No one model gave the best description of all features of the data, each model being better than the others for some observables and worse in other quantities. We interpret these results in terms of the underlying QCD and hadronisation schemes. The trends of the data across the energy range 12.0≦W≦41.5 GeV are generally well reproduced by the models with the parameters optimised at 35 GeV.

11 data tables match query

The errors include the statistical error and that from the correction procedure.

The errors include the statistical error and that from the correction procedure.

The errors include the statistical error and that from the correction procedure.

More…

Measurements of the charge asymmetry in top-quark pair production in the dilepton final state at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 94 (2016) 032006, 2016.
Inspire Record 1449082 DOI 10.17182/hepdata.77033

Measurements of the top--antitop quark pair production charge asymmetry in the dilepton channel, characterized by two high-${p}_{\rm{T}}$ leptons (electrons or muons), are presented using data corresponding to an integrated luminosity of $20.3$ $\textrm{fb}^{-1}$ from $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 8$ TeV collected with the ATLAS detector at the Large Hadron Collider at CERN. Inclusive and differential measurements as a function of the invariant mass, transverse momentum, and longitudinal boost of the $t\bar{t}$ system are performed both in the full phase space and in a fiducial phase space closely matching the detector acceptance. Two observables are studied: $A^{\ell\ell}_{\textrm{C}}$ based on the selected leptons and $A^{t\bar{t}}_{\textrm{C}}$ based on the reconstructed $t\bar{t}$ final state. The inclusive asymmetries are measured in the full phase space to be $A^{\ell\ell}_{\textrm{C}} = 0.008 \pm 0.006$ and $A^{t\bar{t}}_{\textrm{C}} = 0.021 \pm 0.016$, which are in agreement with the Standard Model predictions of $A^{\ell\ell}_{\textrm{C}} = 0.0064 \pm 0.0003 $ and $A^{t\bar{t}}_{\textrm{C}} = 0.0111 \pm 0.0004$.

10 data tables match query

Unfolded distribution for the inclusive $\Delta|\eta|$ observable in the fiducial volume.

Unfolded distribution for the inclusive $\Delta|y|$ observable in the fiducial volume.

The leptonic inclusive asymmetry in the fiducial volume.

More…

Investigation of the splitting of quark and gluon jets.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 4 (1998) 1-17, 1998.
Inspire Record 467927 DOI 10.17182/hepdata.49547

The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation CA/CF. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution y, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is 2.77±0.11±0.10. Due to non-perturbative effects, the data are below the expectation at small y. The transition from the perturbative to the non-perturbative domain appears at smaller y for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets.

14 data tables match query

Scaled energy distribution of charged hadrons produced in Quark jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Gluon jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Quark jets in 'Mercedes' topology 3-JET events.

More…

Measurements of $W^\pm Z$ production cross sections in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 092004, 2016.
Inspire Record 1426523 DOI 10.17182/hepdata.75197

This paper presents measurements of $W^\pm Z$ production in $pp$ collisions at a center-of-mass energy of 8 TeV. The gauge bosons are reconstructed using their leptonic decay modes into electrons and muons. The data were collected in 2012 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 20.3 fb$^{-1}$. The measured inclusive cross section in the detector fiducial region is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu\ \ell \ell} = 35.1 \pm$ 0.9 (stat.) $\pm 0.8$ (sys.) $\pm 0.8$ (lumi.) fb, for one leptonic decay channel. In comparison, the next-to-leading-order Standard Model expectation is 30.0 $\pm$ 2.1 fb. Cross sections for $W^+Z$ and $W^-Z$ production and their ratio are presented as well as differential cross sections for several kinematic observables. Limits on anomalous triple gauge boson couplings are derived from the transverse mass spectrum of the $W^\pm Z$ system. From the analysis of events with a $W$ and a $Z$ boson associated with two or more forward jets an upper limit at 95% confidence level on the $W^\pm Z$ scattering cross section of 0.63 fb, for each leptonic decay channel, is established, while the Standard Model prediction at next-to-leading order is 0.13 fb. Limits on anomalous quartic gauge boson couplings are also extracted.

48 data tables match query

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

More…

Measurement of the W boson mass and W+ W- production and decay properties in e+ e- collisions at s**(1/2) = 172-GeV

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 1 (1998) 395-424, 1998.
Inspire Record 448093 DOI 10.17182/hepdata.47403

This paper describes the measurement of the W boson mass, M_W, and decay width, Gamma_W, from the direct reconstruction of the invariant mass of its decay products in W pair events collected at a mean centre-of-mass energy of sqrt{s} = 172.12 GeV with the OPAL detector at LEP. Measurements of the W pair production cross-section, the W decay branching fractions and properties of the W decay final states are also described. A total of 120 candidate W^+W^- events has been selected for an integrated luminosity of 10.36 pb^-1. The W^+W^- production cross-section is measured to be sigma_WW = 12.3 +/- 1.3(stat.) +/- 0.3(syst.) pb, consistent with the Standard Model expectation. The W^+W^- -> qq(bar) l nu and W^+W^- -> qq(bar)qq(bar) final states are used to obtain a direct measurement of Gamma_W = 1.30^{+0.62}_{-0.55}(stat.) +/- 0.18(syst.) GeV. Assuming the Standard Model relation between M_W and Gamma_W, the W boson mass is measured to be M_W = 80.32 +/- 0.30(stat.) +/- 0.09(syst.) GeV. The event properties of the fully-hadronic decays of W^+W^- events are compared to those of the semi-leptonic decays. At the current level of precision there is no evidence for effects of colour reconnection in the observables studied. Combining data recorded by OPAL at sqrt{s} ~ 161-172 GeV, the W boson branching fraction to hadrons is determined to be 69.8^{+3.0}_{-3.2}(stat.) +/- 0.7(syst.)%, consistent with the prediction of the Standard Model. The combined mass measurement from direct reconstruction and from the W^+W^- production cross-sections measured at sqrt{s} ~ 161 and sqrt{s} ~ 172 GeV is M_W = 80.35 +/- 0.24(stat.) +/- 0.07(syst.) GeV.

1 data table match query

The fit assumptions are as follows: fitting branching ratios (C=BR-FIT), lepton universality is assumed (C=LEPT-UNIVERSALITY), and SM Br (C=BR-SM).


A Measurement of Muon Pair Production in $e^+ e^-$ Annihilation at Center-of-mass Energies 35-{GeV} $\le \sqrt{s} \le$ 46.8-{GeV}

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 40 (1988) 163-170, 1988.
Inspire Record 261668 DOI 10.17182/hepdata.1897

The reactione+e−→µ+µ− has been studied at centre of mass energies between 35.0 and 46.8 GeV using the TASSO detector at PETRA. We present measurements of the forward-backward charge asymmetry (Aμμ) and cross section σμμ for this reaction at three energies. At 35.0 GeV we obtain a cross section relative to the QED prediction ofRμμ=σμμ/σo=0.932±0.018±0.044 andAμμ=(−10.6−2.3+2.2±0.5)%. At 38.3 GeV we findRμμ=0.951±0.072−0.057+0.063 andAμμ=(+1.7−8.6+8.5±0.5)%. At 43.6 GeV we measureRμμ=0.921±0.037±0.055 andAμμ=(−17.6−4.3+4.4±0.5)%. Our results are in good agreement with the predictions of the standard model. Including previous TASSO data we present improved determinations of muonic electroweak parameters. We also report on lower limits of possible contributions from contact interactions.

7 data tables match query

If only one error is given, this is the sum of the statistical and systematic errors in quadrature.

The data are corrected for 'reduced QED' radiative corrections. Statistical errors only.

The data are corrected for 'reduced QED' radiative corrections. Statistical errors only.

More…