Total and differential cross sections of the reaction K−p→Λη have been determined for incident K− lab momenta between 1.2 and 1.7 BeVc. No striking resonance formation in the direct channel is seen; in particular, the Y0*(2100) decays not more than 3% via the Λη channel. A prominent forward peak in the differential cross sections indicates some crossed-channel meson-exchange activity. The branching ratio Γ(η→neutrals)Γ(η→π+π−π0) is 3.6±0.6.
No description provided.
A new high precision measurement of the reaction pp -> pK+Lambda at a beam momentum of 2.95 GeV/c with more than 200,000 analyzed events allows a detailed analysis of differential observables and their inter-dependencies. Correlations of the angular distributions with momenta are examined. The invariant mass distributions are compared for different regions in the Dalitz plots. The cusp structure at the N Sigma threshold is described with the Flatt\'e formalism and its variation in the Dalitz plot is analyzed.
No description provided.
No description provided.
No description provided.
The results from the first kinematically complete measurement of the dd --> 4Hepipi reaction are reported. The aim was to investigate a long standing puzzle regarding the origin of the peculiar pipi-invariant mass distributions appearing in double pion production in light ion collisions, the so-called ABC effect. The measurements were performed at the incident deuteron energies of 712 MeV and 1029 MeV, with the WASA detector assembly at CELSIUS in Uppsala, Sweden. We report the observation of a characteristic enhancement at low pipi-invariant mass at 712 MeV, the lowest energy yet. At the higher energy, in addition to confirming previous experimental observations, our results reveal a strong angular dependence of the pions in the overall centre of mass system. The results are qualitatively reproduced by a theoretical model, according to which the ABC effect is described as resulting from a kinematical enhancement in the production of the pion pairs from two parallel and independent NN--> dpi sub-processes.
Total cross section for neutral and charged pion channels.
Invariant PI0 PI0 mass distribution at deuteron kinetic energy 1.029 GeV.
Invariant PI+ PI- mass distribution at deuteron kinetic energy 1.029 GeV.
We have studied the ratio R=[dσ(γd→π−pp)dt][dσ(γd→π+nn)dt]−1 at 8 and 16 GeV for momentum transfers |t| from about 0.001 to 1.3 GeV2. R is close to unity for |t|<mπ2, but falls very rapidly with increasing |t|, passing through ½ near |t|=0.1 GeV2 and having a minium value of about 13 near |t|=0.4 GeV2; it slowly increases at larger momentum transfers. These results are similar to those obtained in other laboratories at 3.4 and 5 GeV. This implies considerable interference between the isoscalar and isovector photon amplitudes.
No description provided.
No description provided.
Photopion energy distributions have been measured on 7 Li , 28 Si , 51 V and 93 Nb at θ π = 90° with 200 MeV electron. The logarithmic plot of the distributions shows a break at around 10 MeV of the residual energy. This is not explained by the quasi-free π + production. The (e, π + ) cross sections at θ π = 90° deduced by integrating the energy distribution. The result can be approximated by σ 0 Z 2 3 , where σ 0 is 0.13 times the elementary cross section of H(e, π + ) at θ π = 90°. The quasi-free π + production calculated by the Fermi-gas model with Pauli exclusion principle approximately reproduces the relative dependence on the charge number but its absolute value is about ten times as large as the experimental result. The present result for the charged photopion cross section in the threshold region is in contrast to the case in the Δ-resonance region where the cross section of π + + π − photoproduction is expressed by A 2 3 times the elementary cross sections.
No description provided.
Cross-sections of single positive pions produced in hydrogen by photons of laboratory energies between 550 and 900 MeV at centre of-mass angle between 0° and 10° have been measured, using a magnetic spectrometer and an appropriate counter arrangement. The experiment is described in detail. Angular distributions at constant y-ray energy and the dependence of the differential cross-section on energy at variousconstant centre-of-mass angles are given and their significance discussed.
No description provided.
No description provided.
No description provided.
Enhanced production of ΛΛ pairs, above the prediction of a two-step process model, is observed near threshold (around the masses of 2.23 – 2.26 GeV/c 2 ) in the 12 C(K − ,K + ) reaction at P K − = 1.66GeV/c using a scintillating fiber target. The differential cross section for the ΛΛ production averaged over 2.3° ≤ $$ K + ≤ 14.7° in the momentum region 0.95 ≤ p K + ≤ 1.3GeV/c was found to be 7.6 ± 1.3 μb/sr, and that for the enhancement approximately 3 μb/sr.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Cross sections have been measured for the reactions p¯p→π+π− and K+K− at 15 incident-beam momenta between 360 and 760 MeV/c with significantly better statistics than previous experiments in this momentum region. No significant structure has been found in either channel. The values of 90%-confidence-level upper limits for the possible resonance cross sections are given.
.
.
.
The pp->pp phi reaction has been studied at the Cooler Synchrotron COSY-Juelich, using the internal beam and ANKE facility. Total cross sections have been determined at three excess energies epsilon near the production threshold. The differential cross section closest to threshold at epsilon=18.5 MeV exhibits a clear S-wave dominance as well as a noticeable effect due to the proton-proton final state interaction. Taken together with data for pp omega-production, a significant enhancement of the phi/omega ratio of a factor 8 is found compared to predictions based on the Okubo-Zweig-Iizuka rule.
K+ K- invariant mass distribution.
Total cross sections.
Differential decay distribution of the K+ in the rest frame of the PHI-meson w.r.t. the beam.