New Results on the Reaction $e^+ e^- \to \mu^+ \mu^-$ at $\sqrt{s}=29$-{GeV}

Derrick, M. ; Fernandez, E. ; Fries, R. ; et al.
Phys.Rev.D 31 (1985) 2352, 1985.
Inspire Record 212767 DOI 10.17182/hepdata.3935

We have measured the process e+e−→μ+μ− at √s =29 GeV using the High Resolution Spectrometer at SLAC PEP. The forward-backward charge asymmetry is Aμμ=-(4.9±1.5±0.5)% based on 5057 events. A subsample of 3488 μ+μ− events in the angular range ‖cosθ‖<0.55 gives a cross-section ratio of Rμμ=0.990±0.017±0.030. The resulting couplings of the weak neutral current are gaegaμ=0.208±0.064± 0.021 and gvegvμ=0.027 ±0.051±0.089. The QED cutoff parameters are Λ+>170 GeV and Λ−>146 GeV at 95% C.L.

4 data tables match query

Corrected for acceptance and O(alpha**3) QED radiation. Numerical values taken from SUGANO-ANL-HEP-CP-84-90.

Forward-backward asymmetry based on fit to angular distribution. Result is given combined with earlier data from BENDER et al.

No description provided.

More…

A Search for substructure of leptons and quarks with the CELLO detector

The CELLO collaboration Behrend, H.J. ; Criegee, L. ; Field, J.H. ; et al.
Z.Phys.C 51 (1991) 149-156, 1991.
Inspire Record 301727 DOI 10.17182/hepdata.14981

Differential cross section data of the CELLO experiment on pair production of muons, taus, and heavy quarks ine+e−-annihilation are presented and analysed, together with our data on Bhabha scattering, in terms of compositeness effects characterized by the mass scale Λ. We discuss difficulties in the combination of limits Λ from different experiments. The appropriate parameter to combine different results turns out to be ɛ=±1/Λ2, which is in contrast to Λ Gaussian distributed.

10 data tables match query

Errors are combined statistics and systematics.

Errors are combined statistics and systematics.

Errors are combined statistics and systematics.

More…

Tests of QED at 29-GeV Center-Of-Mass Energy

Bender, D. ; Derrick, M. ; Fernandez, E. ; et al.
Phys.Rev.D 30 (1984) 515, 1984.
Inspire Record 199464 DOI 10.17182/hepdata.23593

During the initial data run with the High Resolution Spectrometer (HRS) at SLAC PEP, an integrated luminosity of 19.6 pb−1 at a center-of-mass energy of 29 GeV was accumulated. The data on Bhabha scattering and muon pair production are compared with the predictions of QED and the standard model of electroweak interactions. The measured forward-backward charge asymmetry in the angular distribution of muon pairs is -8.4%±4.3%. A comparison between the data and theoretical predictions places limits on alternative descriptions of leptons and their interactions. The existence of heavy electronlike or photonlike objects that alter the structure of the QED vertices or modify the propagator are studied in terms of the QED cutoff parameters. The Bhabha-scattering results give a lower limit on a massive photon and upper limits on the effective size of the electron of Λ+>121 GeV and Λ−>118 GeV at the 95% confidence level. Muon pair production yields Λ+>172 GeV and Λ−>172 GeV. If electrons have substructure, the magnitude and character of the couplings of the leptonic constituents affects the Bhabha-scattering angular distributions to such an extent that limits on the order of a TeV can be extracted on the effective interaction length of the components. For models in which the constituents interact with vector couplings of strength g24π∼1, the energy scale ΛVV for the contact interaction is measured to be greater than 1419.0 GeV at the 95% confidence level. We set limits on the production of supersymmetric scalar electrons through s-channel single-photon annihilation and t-channel inelastic scattering. Using events with two noncollinear electrons and no other charged or observed neutral particles in the final state, we see one event which is consistent with a simple supersymmetric model but which is also consistent with QED. This allows us to exclude the scalar electron to 95% confidence level in the mass range 1.8 to 14.2 GeV/c2.

1 data table match query

Forward-backward asymmetry from full angular range.


A Measurement of the Muon Pair Production in $e^+ e^-$ Annihilation at 38.3-{GeV} $\le \sqrt{s} \le$ 46.8-{GeV}

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 191 (1987) 209-216, 1987.
Inspire Record 244835 DOI 10.17182/hepdata.30180

The e + e − → μ + μ − reaction has been studied at centre of mass energies ranging between 38.3 abd 46.8 GeV with the CELLO detector at PETRA. We present results on the cross section and the charge asymmetry for this channel. Combining all the data at the average energy 〈 s 〉=43 GeV we obtain R μμ =〈 σ μμ / σ 0 〉=0.98±0.04±0.04, 〈 A μμ 〉=(−14.1±3.7±1.0)%, where σ 0 is the QED cross section and A μμ is the charge asymmetry corrected for pure radiative effects. These results are in good agreement with the expected values of R μμ =1.01 and A μμ =−14.5% at that energy.

3 data tables match query

Mu-pair cross sections.

Corrected angular distributions with data sample divided into two energy regions with means 39 and 44 GeV and total energy region.

Forward-backward asymmetry.


Coupling Strengths of Weak Neutral Currents From Leptonic Final States at 22-{GeV} and 34-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Z.Phys.C 16 (1983) 301, 1983.
Inspire Record 180756 DOI 10.17182/hepdata.16385

Differential cross sections fore+e−→e+e−, τ+, τ- measured with the CELLO detector at\(\left\langle {\sqrt s } \right\rangle= 34.2GeV\) have been analyzed for electroweak contributions. Vector and axial vector coupling constants were obtained in a simultaneous fit to the three differential cross sections assuming a universal weak interaction for the charged leptons. The results,v2=−0.12±0.33 anda2=1.22±0.47, are in good agreement with predictions from the standardSU(2)×U(1) model for\(\sin ^2 \theta _w= 0.228\). Combining this result with neutrino-electron scattering data gives a unique axial vector dominated solution for the leptonic weak couplings. Assuming the validity of the standard model, a value of\(\sin ^2 \theta _w= 0.21_{ - 0.09}^{ + 0.14}\) is obtained for the electroweak mixing angle. Additional vector currents are not observed (C<0.031 is obtained at the 95% C.L.).

1 data table match query

Combined MU and TAU asymmetry. See PL 114B(1982)282 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1234> RED = 1234 </a>) and ZP C14(1982)283 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1245> RED = 1245 </a>) for individual asymmetry measurements.


Measurement of the Reaction $e^+ e^- \to \mu^+ \mu^-$ for 14-{GeV} $\le \sqrt{s} \le$ 36.4-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Field, J.H. ; et al.
Z.Phys.C 14 (1982) 283, 1982.
Inspire Record 177216 DOI 10.17182/hepdata.16414

The reaction (e+e−→μ+μ−) has been measured between\(\sqrt S= 14.0\) and\(\sqrt S= 36.4\). The total cross section result is in good agreement with the QED prediction and the following Λ values have been obtained:Λ+=186 GeV,Λ−=101 GeV. The angular distribution at high energy (\(\left( {\left. {\left\langle {\sqrt S } \right.} \right\rangle= 34.2 GeV} \right)\)) shows a fitted charge asymmetry of −0.064±0.064 in agreement with theW-S model prediction of −0.092, corresponding to an axial coupling parametera2=4ga2=0.69±0.69.

2 data tables match query

No description provided.

Errors include contribution from systematics. Result based on fit(1 + cos(theta)**2 + q cos(theta)) to corrected angular distribution.


Measurements of the line shape of the Z0 and determination of electroweak parameters from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 417 (1994) 3-57, 1994.
Inspire Record 372144 DOI 10.17182/hepdata.48413

During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450 000 Z 0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z 0 resonance. Model independent fits to the cross sections and leptonic forward- backward asymmetries yield the following Z 0 parameters: the mass and total width M Z = 91.187 ± 0.009 GeV, Γ Z = 2.486 ± 0.012 GeV, the hadronicf and leptonic partials widths Γ had = 1.725 ± 0.012 GeV, Γ ℓ = 83.01 ± 0.52 MeV, the invisible width Γ inv = 512 ± 10 MeV, the ratio of hadronic to leptonic partial widths R ℓ = 20.78 ± 0.15, and the Born level hadronic peak cross section σ 0 = 40.90 ± 0.28 nb. Using these results and the value of α s determined from DELPHI data, the number of light neutrino species is determined to be 3.08 ± 0.05. The individual leptonic widths are found to be: Γ e = 82.93 ± 0.70 MeV, Γ μ = 83.20 ± 1.11 MeV and Γ τ = 82.89 ± 1.31 MeV. Using the measured leptonic forward-backward asymmetries and assuming lepton universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are found to be g V ℓ 2 = (1.47 ± 0.51) × 10 −3 and g A ℓ 2 = 0.2483 ± 0.0016. A full Standard Model fit to the data yields a value of the top mass m t = 115 −82 +52 (expt.) −24 +52 (Higgs) GeV, corresponding to a value of the weak mixing angle sin 2 θ eff lept = 0.2339±0.0015 (expt.) −0.0004 +0.0001 (Higgs). Values are obtained for the variables S and T , or ϵ 1 and ϵ 3 which parameterize electroweak loop effects.

26 data tables match query

Hadronic cross sections from the 1990 data set. Additional systematic uncertainties come from efficiencies and background of 0.4 pct in addition to the luminosity uncertainty 0.7 pct.

Hadronic cross sections from the 1991 data set. Additional systematic uncertainties come from efficiencies and background of 0.2 pct in addition to the luminosity uncertainty 0.6 pct.

E+ E- cross sections from the 1990 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data).

More…

DELPHI results on the Z0 resonance parameters through its hadronic and leptonic decay modes

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
CERN-PPE-90-119, 1990.
Inspire Record 298840 DOI 10.17182/hepdata.47313

None

7 data tables match query

Overall systematic error is 2.3 pct.

Overall systematic error is 2.6 pct.

Overall systematic error is 2.8 pct.

More…

Study of the Leptonic Decays of the $Z^0$ Boson

The DELPHI collaboration Aarnio, P. ; Abreu, P. ; Adam, W. ; et al.
Phys.Lett.B 241 (1990) 425-434, 1990.
Inspire Record 295500 DOI 10.17182/hepdata.15431

Measurements are presented of the cross section ratios R ℓ = σ ℓ ( e + e − →ℓ + ℓ − ) σ h ( e + e − →hadrons) for ℓ=e, μ and τ using data taken from a scan around the Z 0 . The results are R e =(5.09± o .32±0.18)%, R μ =(0.46±0.35±0.17)% and R τ =(4.72±0.38±0.29)% where, for the ratio R e , the t -channel contribution has been subtracted. These results are consistent with the hypothesis of lepton universality and test this hypothesis at the energy scale s ∼8300 GeV 2 . The absolute cross sections σ ℓ (e + e − →ℓ + ℓ − ) have also been measured. From the cross sections the leptonic partial widths Γ e =(83.2±3.0±2.4) MeV, (Γ e Γ μ ) 1 2 =(84.6±3.0±2.4) MeV and (Γ e Γ τ ) 1 2 =(82.6±3.3±3.2) MeV have been extracted. Assuming lepton universality the ratio Γ ℓ Γ h =(4.89±0.20±0.12) × 10 −2 w was obtained, together with Γ ℓ =(83.6±1.8±2.2) MeV. The number of light neutrino species is determined to be N v =3.12±0.24±0.25. Al the data are consistent with the predictions of the standard model.

4 data tables match query

E+ E- final state is t-channel subtracted.

No t-channel subtraction. Statistical errors only.

Statistical errors only.

More…

A Study of the reaction e+ e- ---> mu+ mu- around the Z0 pole

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 260 (1991) 240-248, 1991.
Inspire Record 314619 DOI 10.17182/hepdata.29420

Measurements of the cross section and forward-backward asymmetry for the reaction e + e − → μ + μ − using the DELPHI detector at LEP are presented. The data come from a scan around the Z 0 peak at seven centre of mass energies, giving a sample of 3858 events in the polar angle region 22° < θ < 158°. From a fit to the cross section for 43° < θ < 137°, a polar angle region for which the absolute efficiency has been determined, the square root of the product of the Z 0 → e + e − and Z 0 → μ + μ − partial widths is determined to be (Γ e Γ μ ) 1 2 = 85.0 ± 0.9( stat. ) ± 0.8( syst. ) MeV . From this measurement of the partial width, the value of the effective weak mixing angle is determined to be sin 2 ( θ w ) = 0.2267 ± 0.0037 . The ratio of the hadronic to muon pair partial widths is found to be Γ h / Γ μ = 19.89 ± 0.40(stat.) ± 0.19(syst.). The forward-backward asymmetry at the resonance peak energy E CMS = 91.22 GeV is found to be A FB = 0.028 ± 0.020(stat.) ± 0.005(syst.). From a combined fit to the cross section and forward-backward asymmetry data, the products of the electron and muon vector and axial-vector coupling constants are determined to be V e V μ = 0.0024 ± 0.0015(stat.) ± 0.0004(syst.) and A e A μ = 0.253 ± 0.003(stat.) ± 0.003 (syst.). The results are in good agreement with the expectations of the minimal standard model.

3 data tables match query

Fully corrected cross sections.

Forward-backward asymmetries corrected to full solid angle, but not for cuts on momenta and acollinearity.

Effective weak mixing angle.