Showing 10 of 91 results
A search for resonant and non-resonant pair production of Higgs bosons in the $b\bar{b}\tau^+\tau^-$ final state is presented. The search uses 36.1 fb$^{-1}$ of $pp$ collision data with $\sqrt{s}= 13$ TeV recorded by the ATLAS experiment at the LHC in 2015 and 2016. The semileptonic and fully hadronic decays of the $\tau$-lepton pair are considered. No significant excess above the expected background is observed in the data. The cross-section times branching ratio for non-resonant Higgs boson pair production is constrained to be less than 30.9 fb, 12.7 times the Standard Model expectation, at 95% confidence level. The data are also analyzed to probe resonant Higgs boson pair production, constraining a model with an extended Higgs sector based on two doublets and a Randall-Sundrum bulk graviton model. Upper limits are placed on the resonant Higgs boson pair production cross-section times branching ratio, excluding resonances $X$ in the mass range $305~{\rm GeV} < m_X < 402~{\rm GeV}$ in the simplified hMSSM minimal supersymmetric model for $\tan\beta=2$ and excluding bulk Randall-Sundrum gravitons $G_{\mathrm{KK}}$ in the mass range $325~{\rm GeV} < m_{G_{\mathrm{KK}}} < 885~{\rm GeV}$ for $k/\overline{M}_{\mathrm{Pl}} = 1$.
Observed and expected limits at 95% CL on the cross-sections of RS Graviton to HH for k/MPl = 1 process
Observed and expected limits at 95% CL on the cross-sections of RS Graviton to HH for k/MPl = 2 process
Observed and expected limits at 95% CL on the cross-sections of hMSSM scalar X to HH process
Acceptance x efficiency versus resonance mass for both lephad and hadhad channels in the RS bulk model with k/MPl = 1
Acceptance x efficiency versus resonance mass for both lephad and hadhad channels in the RS bulk model with k/MPl = 2
Acceptance x efficiency versus resonance mass for both lephad and hadhad channels in the scalar model
Upper limits on the production cross-section times the HH to bbtautau branching ratio for non-resonant HH at 95% CLS and their interpretation as multiples of the SM prediction
Upper limits on the production cross-section times the HH to bbtautau branching ratio divided by the SM prediction for non-resonant HH at 95% CL
Post-fit expected number of signal and background events and observed number of data events after applying the selection criteria and requiring exactly 2 b-tagged jets and assuming a background-only hypothesis
Post-fit expected number of signal and background events and observed number of data events in the last two bins of the non-resonant BDT score distribution of the SM signal after applying the selection criteria and requiring exactly 2 b-tagged jets and assuming a background-only hypothesis
An observation of electroweak $W^{\pm}Z$ production in association with two jets in proton-proton collisions is presented. The data collected by the ATLAS detector at the Large Hadron Collider in 2015 and 2016 at a centre-of-mass energy of $\sqrt{s} =$ 13 TeV are used, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Events containing three identified leptons, either electrons or muons, and two jets are selected. The electroweak production of $W^{\pm}Z$ bosons in association with two jets is measured with an observed significance of 5.3 standard deviations. A fiducial cross-section for electroweak production including interference effects is measured to be $\sigma_{WZjj\mathrm{-EW}} = 0.57 \; ^{+ 0.14} _{- 0.13} \,(\mathrm{stat.}) \; ^{+ 0.07} _{- 0.06} \,(\mathrm{syst.}) \; \mathrm{fb}$. Total and differential fiducial cross-sections of the sum of $W^\pm Z jj$ electroweak and strong productions for several kinematic observables are also measured.
Fiducial cross section of the electroweak $W^{\pm}Z$ boson pair production in association with two jets. The first systematic uncertainty is experimental, the second is the theory modelling and interference systematics and the third one is the luminosity uncertainty.
Fiducial cross section of the $W^{\pm}Z$ boson pair production in association with two jets. The first systematic uncertainty is experimental, the second is the theory modelling and interference systematics and the third one is the luminosity uncertainty.
Numbers of observed and expected events in the $W^{\pm}Zjj$ signal region and in the three control regions, before the fit. The expected number of $WZjj-EW$ events from $SHERPA$ and the estimated number of background events from the other processes are shown. The sum of the background containing misidentified leptons is labelled "Misid. leptons". The total uncertainties are quoted.
Summary of the relative uncertainties in the measured fiducial cross section $\sigma^{\mathrm{fid}}_{W^\pm Z j j-EW}$ . The uncertainties are reported as percentages.
Numbers of observed and expected events in the $W^{\pm}Zjj$ signal region and in the three control regions, after the fit. The expected number of $WZjj-EW$ events from $SHERPA$ and the estimated number of background events from the other processes are shown. The sum of the background containing misidentified leptons is labelled "Misid. leptons". The total correlated post-fit uncertainties are quoted.
Measured $W^{pm}Zjj$ differential cross-section in the VBS fiducial phase space. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds, pileup and luminosity. The last bin is a cross section for all events above the lower end of the bin.
Correlation matrix for the unfolded fiducial cross-section.
Measured $W^{pm}Zjj$ differential cross-section in the VBS fiducial phase space. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds, pileup and luminosity. The last bin is a cross section for all events above the lower end of the bin.
Correlation matrix for the unfolded fiducial cross-section.
Measured $W^{pm}Zjj$ differential cross-section in the VBS fiducial phase space. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds, pileup and luminosity.
Correlation matrix for the unfolded fiducial cross-section.
Measured $W^{pm}Zjj$ differential cross-section in the VBS fiducial phase space. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds, pileup and luminosity. The last bin is a cross section for all events above the lower end of the bin.
Correlation matrix for the unfolded fiducial cross-section.
Measured $W^{pm}Zjj$ differential cross-section in the VBS fiducial phase space. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds, pileup and luminosity. The last bin is a cross section for all events above the lower end of the bin.
Correlation matrix for the unfolded fiducial cross-section.
Measured $W^{pm}Zjj$ differential cross-section in the VBS fiducial phase space. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds, pileup and luminosity.
Correlation matrix for the unfolded fiducial cross-section.
Measured $W^{pm}Zjj$ differential cross-section in the VBS fiducial phase space. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds, pileup and luminosity. The last bin is a cross section for all events above the lower end of the bin.
Correlation matrix for the unfolded fiducial cross-section.
Measured $W^{pm}Zjj$ differential cross-section in the VBS fiducial phase space. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds, pileup and luminosity. the last bin is a cross section for all events above the lower end of the bin.
Correlation matrix for the unfolded fiducial cross-section.
A search for electroweak production of supersymmetric particles is performed in two-lepton and three-lepton final states using recursive jigsaw reconstruction. The search uses data collected in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$ = 13 TeV proton--proton collisions at the CERN Large Hadron Collider corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Chargino-neutralino pair production, with decays via W/Z bosons, is studied in final states involving leptons and jets and missing transverse momentum for scenarios with large and intermediate mass-splittings between the parent particle and lightest supersymmetric particle, as well as for the scenario where this mass splitting is close to the mass of the Z boson. The latter case is challenging since the vector bosons are produced with kinematic properties that are similar to those in Standard Model processes. Results are found to be compatible with the Standard Model expectations in the signal regions targeting large and intermediate mass-splittings, and chargino-neutralino masses up to 600 GeV are excluded at 95% confidence level for a massless lightest supersymmetric particle. Excesses of data above the expected background are found in the signal regions targeting low mass-splittings, and the largest local excess amounts to 3.0 standard deviations.
Distributions of kinematic variables in the signal regions for the $2\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution for $H_{4,1}^{\textrm{PP}}$ in SR$2\ell$_Low is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Distributions of kinematic variables in the signal regions for the $2\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution for $\textrm{min}(H^{\textrm{P}_{\textrm{a}}}_{1,1},H^{\textrm{P}_{\textrm{b}}}_{1,1})/\textrm{min}(H^{\textrm{P}_{\textrm{a}}}_{2,1},H^{\textrm{P}_{\textrm{b}}}_{2,1})$ in SR$2\ell$_Low is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Distributions of kinematic variables in the signal regions for the $2\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution for $p_{\mathrm{T\ ISR}}^{~\textrm{CM}}$ in SR2$\ell$_ISR is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Distributions of kinematic variables in the signal regions for the $2\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution for $R_{\textrm{ISR}}$ in SR$2\ell$_ISR is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Distributions of kinematic variables in the signal regions for the $3\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution for $H_{3,1}^{\textrm{PP}}$ in SR$3\ell$_Low is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Distributions of kinematic variables in the signal regions for the $3\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution of $p_{\textrm{T}}^{\ell_{1}}$ in SR$3\ell$_Low is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Distributions of kinematic variables in the signal regions for the $3\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution of $p_{\mathrm{T\ ISR}}^{~\textrm{CM}}$ in SR$3\ell$_ISR is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Distributions of kinematic variables in the signal regions for the $3\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution of $R_{\textrm{ISR}}$ in SR$3\ell$_ISR is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Expected exclusion limits at 95% CL on the masses of C1/N2 and N1 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the 2$\ell$ search, assuming 100\% branching ratio of the sparticles to decay to SM $W/Z$ bosons and LSP.
Observed exclusion limits at 95% CL on the masses of C1/N2 and N1 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the 2$\ell$ search, assuming 100% branching ratio of the sparticles to decay to SM $W/Z$ bosons and LSP.
Expected exclusion limits at 95% CL on the masses of C1/N2 and N1 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the the $3\ell$ search, assuming 100% branching ratio of the sparticles to decay to SM $W/Z$ bosons and LSP.
Observed exclusion limits at 95% CL on the masses of C1/N2 and N1 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the the $3\ell$ search, assuming 100% branching ratio of the sparticles to decay to SM $W/Z$ bosons and LSP.
Expected exclusion limits at 95% CL on the masses of C1/N2 and N1 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the statistical combination of the $2\ell$ and 3$\ell$ search channels, assuming 100\% branching ratio of the sparticles to decay to SM $W/Z$ bosons and LSP.
Observed exclusion limits at 95% CL on the masses of C1/N2 and N1 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the statistical combination of the $2\ell$ and 3$\ell$ search channels, assuming 100% branching ratio of the sparticles to decay to SM $W/Z$ bosons and LSP.
Signal region acceptance for chargino-neutralino production in SR2L_High. The acceptance is with respect to all possible $W/Z$ decays.
Signal region efficiency for chargino-neutralino production in SR2L_High.
Signal region acceptanceXefficiency for chargino-neutralino production in SR2L_High.
Signal region acceptance for chargino-neutralino production in SR2L_Int. The acceptance is with respect to all possible $W/Z$ decays.
Signal region efficiency for chargino-neutralino production in SR2L_Int.
Signal region acceptanceXefficiency for chargino-neutralino production in SR2L_Int.
Signal region acceptance for chargino-neutralino production in SR2L_Low. The acceptance is with respect to all possible $W/Z$ decays.
Signal region efficiency for chargino-neutralino production in SR2L_Low.
Signal region acceptanceXefficiency for chargino-neutralino production in SR2L_Low.
Signal region acceptance for chargino-neutralino production in SR2L_ISR. The acceptance is with respect to all possible $W/Z$ decays.
Signal region efficiency for chargino-neutralino production in SR2L_ISR.
Signal region acceptanceXefficiency for chargino-neutralino production in SR2L_ISR.
Signal region acceptance for chargino-neutralino production in SR3L_High. The acceptance is with respect to all possible $W/Z$ decays.
Signal region efficiency for chargino-neutralino production in SR3L_High.
Signal region acceptanceXefficiency for chargino-neutralino production in SR3L_High.
Signal region acceptance for chargino-neutralino production in SR3L_Int. The acceptance is with respect to all possible $W/Z$ decays.
Signal region efficiency for chargino-neutralino production in SR3L_Int.
Signal region acceptanceXefficiency for chargino-neutralino production in SR3L_Int.
Signal region acceptance for chargino-neutralino production in SR3L_Low. The acceptance is with respect to all possible $W/Z$ decays.
Signal region efficiency for chargino-neutralino production in SR3L_Low.
Signal region acceptanceXefficiency for chargino-neutralino production in SR3L_Low.
Signal region acceptance for chargino-neutralino production in SR3L_ISR. The acceptance is with respect to all possible $W/Z$ decays.
Signal region efficiency for chargino-neutralino production in SR3L_ISR.
Signal region acceptanceXefficiency for chargino-neutralino production in SR3L_ISR.
Observed 95% CL upper limit on the production cross-section of C1/N2 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the 2$\ell$ search, assuming 100% branching ratio of the sparticles to decay to SM $W/Z$ bosons and N1.
Observed 95% CL upper limit on the production cross-section of C1/N2 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the 3$\ell$ search, assuming 100% branching ratio of the sparticles to decay to SM $W/Z$ bosons and N1.
Observed 95% CL upper limit on the production cross-section of C1/N2 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the statistical combination of 2 and 3$\ell$ searches, assuming 100% branching ratio of the sparticles to decay to SM $W/Z$ bosons and N1.
Signal cutflow for SR2L_High and m[C1/N2,N1] = [500,0] GeV. 5000 events were generated for this point. The unweighted number of events correspond to the number of selected MC events in the produced sample, while the weighted yield is normalized to the luminosity of the data.
Signal cutflow for SR2L_Int and m[C1/N2,N1] = [400,200] GeV. 10000 events were generated for this point. The unweighted number of events correspond to the number of selected MC events in the produced sample, while the weighted yield is normalized to the luminosity of the data.
Signal cutflow for SR2L_Low and m[C1/N2,N1] = [200,100] GeV. 20000 events were generated for this point. The unweighted number of events correspond to the number of selected MC events in the produced sample, while the weighted yield is normalized to the luminosity of the data.
Signal cutflow for SR2L_ISR and m[C1/N2,N1] = [200,100] GeV. 20000 events were generated for this point. The unweighted number of events correspond to the number of selected MC events in the produced sample, while the weighted yield is normalized to the luminosity of the data.
Signal cutflow for SR3L_High and m[C1/N2,N1] = [500,0] GeV. 5000 events were generated for this point. The unweighted number of events correspond to the number of selected MC events in the produced sample, while the weighted yield is normalized to the luminosity of the data.
Signal cutflow for SR3L_Int and m[C1/N2,N1] = [400,200] GeV. 10000 events were generated for this point. The unweighted number of events correspond to the number of selected MC events in the produced sample, while the weighted yield is normalized to the luminosity of the data.
Signal cutflow for SR3L_Low and m[C1/N2,N1] = [200,100] GeV. 20000 events were generated for this point. The unweighted number of events correspond to the number of selected MC events in the produced sample, while the weighted yield is normalized to the luminosity of the data.
Signal cutflow for SR3L_ISR and m[C1/N2,N1] = [200,100] GeV. 20000 events were generated for this point. The unweighted number of events correspond to the number of selected MC events in the produced sample, while the weighted yield is normalized to the luminosity of the data.
A search for new resonances decaying into jets containing b-hadrons in $pp$ collisions with the ATLAS detector at the LHC is presented in the dijet mass range from 0.57 TeV to 7 TeV. The dataset corresponds to an integrated luminosity of up to 36.1 fb$^{-1}$ collected in 2015 and 2016 at $\sqrt{s} = 13$ TeV. No evidence of a significant excess of events above the smooth background shape is found. Upper cross-section limits and lower limits on the corresponding signal mass parameters for several types of signal hypotheses are provided at 95% CL. In addition, 95% CL upper limits are set on the cross-sections for new processes that would produce Gaussian-shaped signals in the di-b-jet mass distributions.
The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for both single b-tagged and double b-tagged categories. The efficiencies are shown for simulated event samples corresponding to seven different b and Z' resonance masses in the high-mass region.
The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for double b-tagged category. The efficiencies are shown for simulated event samples corresponding to four different Z' resonance masses in the low-mass region. The efficiencies of identifying an event with two b-jets at trigger level only (Online) and when requiring offline confirmation (Online+offline) are shown.
Dijet mass spectra after the background only fit with the background prediction in the inclusive 1-b-tag high-mass region.
Dijet mass spectra after the background only fit with the background prediction in the high-mass region with two b-tags.
Dijet mass spectra after the background only fit with the background prediction in the low-mass region with two b-tags.
The online b-tagging efficiency with respect to the offline b-tagging efficiency as a function of pT. The b-tagging online and offline working points correspond to an efficiency of 60% and 70%, respectively.
Observed and expected 95% credibility-level upper limits on the cross-section for the b* model in the high-mass region with inclusive b-jet selection.
Observed and expected 95% credibility-level upper limits on the cross-section times branching ratio for the SSM and leptophobic Z' models in the low- and high-mass region with two b-tags selection.
Observed and expected 95% credibility-level upper limits on the cross-section for DM Z' models in the low-mass region with two b-tags selection. The Z' is expected to decay to all five quark flavors other than the top quark and the mediator to SM quark coupling (gSM) equal to 0.1 is assumed.
Observed and expected 95% credibility-level upper limits on the cross-section times branching ratio for DM Z'->bb models in the high-mass region with two b-tags selection. The Z' is expected to decay to bb only and the mediator to SM quark coupling (gSM) equal to 0.25 is assumed.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances with intrinsic width smaller than the detector resolution. The width of the Gaussian reconstructed shape is dominated by the dijet mass resolution. The table shows the limits obtained from the high-mass inclusive one b-tag selection.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances with intrinsic width smaller than the detector resolution. The width of the Gaussian reconstructed shape is dominated by the dijet mass resolution. The table shows the limits obtained from the combined low- and high-mass two b-tags selection.
The mass distributions for the inclusive one b-tagged selection and two b-tagged selection using an integrated luminosity of 36.1 $fb^{-1}$. The inclusive one b-tagged Pythia8 MC distribution is normalized to the inclusive one b-tagged data. The two b-tagged Pythia8 MC distribution is normalized to the two b-tagged data. The systematic uncertainty band is dominated by the b-tagging scale factor and the b-jet energy scale.
Signal acceptance times efficiency for inclusive 1 b-tag and 2 b-tag categories as a function of the simulated b* and the Z' masses.
Signal acceptance times efficiency for 2 b-tag categories as a function of the simulated Z' masses.
The flavor composition of the simulated dijet background as a function of dijet mass before tagging. The fraction of the six combinations of the b-jet , c-jet and light-flavor jet are shown. All offline selections are applied.
The flavor composition of the simulated dijet background as a function of dijet mass with inclusive one b-tag. The fraction of the six combinations of the b-jet , c-jet and light-flavor jet are shown. All offline selections are applied.
The flavor composition of the simulated dijet background as a function of dijet mass with two b-tags. The fraction of the six combinations of the b-jet , c-jet and light-flavor jet are shown. All offline selections are applied.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the inclusive b-jet selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 3%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the inclusive b-jet selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 7%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the inclusive b-jet selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 10%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the inclusive b-jet selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 15%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the combined low- and high-mass two b-tags selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 3%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the combined low- and high-mass two b-tags selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 7%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the combined low- and high-mass two b-tags selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 10%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the combined low- and high-mass two b-tags selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 15%.
A search for long-lived particles decaying into hadrons and at least one muon is presented. The analysis selects events that pass a muon or missing-transverse-momentum trigger and contain a displaced muon track and a displaced vertex. The analyzed dataset of proton-proton collisions at $\sqrt{s} = 13$ TeV was collected with the ATLAS detector and corresponds to 136 fb$^{-1}$. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particle decays that occur in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are presented as limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and interpreted as exclusion limits in scenarios with pair-production of long-lived top squarks that decay via a small $R$-parity-violating coupling into a quark and a muon. Top squarks with masses up to 1.7 TeV are excluded for a lifetime of 0.1 ns, and masses below 1.3 TeV are excluded for lifetimes between 0.01 ns and 30 ns.
Vertex selection acceptance for the $\tilde{t}$ $R$-hadron benchmark model as a function of the transverse decay distance $r_{DV}$.
Vertex selection acceptance for the $\tilde{t}$ $R$-hadron benchmark model as a function of the transverse decay distance $r_{DV}$.
Vertex selection efficiency for the $\tilde{t}$ $R$-hadron benchmark model as a function of the transverse decay distance $r_{DV}$.
Vertex selection efficiency for the $\tilde{t}$ $R$-hadron benchmark model as a function of the transverse decay distance $r_{DV}$.
Track multiplicity $n_{Tracks}$ for preselected DVs in MET-triggered events with at least one muon passing the full selection. Along with the data shown with black markers, the stacked filled histograms represent the background estimates, and predictions for signal scenarios are overlaid with dashed lines. The errors include statistical and systematic uncertainties and are indicated by hatched bands. The DV full selection requirements, $n_{Tracks} \geq 3$ and $m_{DV} > 20$ GeV are visualized with a black arrow.
Track multiplicity $n_{Tracks}$ for preselected DVs in MET-triggered events with at least one muon passing the full selection. Along with the data shown with black markers, the stacked filled histograms represent the background estimates, and predictions for signal scenarios are overlaid with dashed lines. The errors include statistical and systematic uncertainties and are indicated by hatched bands. The DV full selection requirements, $n_{Tracks} \geq 3$ and $m_{DV} > 20$ GeV are visualized with a black arrow.
Track multiplicity $n_{Tracks}$ for preselected DVs in muon-triggered events with at least one muon passing the full selection. Along with the data shown with black markers, the stacked filled histograms represent the background estimates, and predictions for signal scenarios are overlaid with dashed lines. The errors include statistical and systematic uncertainties and are indicated by hatched bands. The DV full selection requirements, $n_{Tracks} \geq 3$ and $m_{DV} > 20$ GeV are visualized with a black arrow.
Track multiplicity $n_{Tracks}$ for preselected DVs in muon-triggered events with at least one muon passing the full selection. Along with the data shown with black markers, the stacked filled histograms represent the background estimates, and predictions for signal scenarios are overlaid with dashed lines. The errors include statistical and systematic uncertainties and are indicated by hatched bands. The DV full selection requirements, $n_{Tracks} \geq 3$ and $m_{DV} > 20$ GeV are visualized with a black arrow.
Invariant mass $m_{DV}$ for the highest-mass preselected DV with at least three associated tracks in MET-triggered events with at least one muon passing the full selection. Along with the data shown with black markers, the stacked filled histograms represent the background estimates, and predictions for signal scenarios are overlaid with dashed lines. The errors include statistical and systematic uncertainties and are indicated by hatched bands. The DV full selection requirements, $n_{Tracks} \geq 3$ and $m_{DV} > 20$ GeV are visualized with a black arrow.
Invariant mass $m_{DV}$ for the highest-mass preselected DV with at least three associated tracks in MET-triggered events with at least one muon passing the full selection. Along with the data shown with black markers, the stacked filled histograms represent the background estimates, and predictions for signal scenarios are overlaid with dashed lines. The errors include statistical and systematic uncertainties and are indicated by hatched bands. The DV full selection requirements, $n_{Tracks} \geq 3$ and $m_{DV} > 20$ GeV are visualized with a black arrow.
Invariant mass $m_{DV}$ for the highest-mass preselected DV with at least three associated tracks in muon-triggered events with at least one muon passing the full selection. Along with the data shown with black markers, the stacked filled histograms represent the background estimates, and predictions for signal scenarios are overlaid with dashed lines. The errors include statistical and systematic uncertainties and are indicated by hatched bands. The DV full selection requirements, $n_{Tracks} \geq 3$ and $m_{DV} > 20$ GeV are visualized with a black arrow.
Invariant mass $m_{DV}$ for the highest-mass preselected DV with at least three associated tracks in muon-triggered events with at least one muon passing the full selection. Along with the data shown with black markers, the stacked filled histograms represent the background estimates, and predictions for signal scenarios are overlaid with dashed lines. The errors include statistical and systematic uncertainties and are indicated by hatched bands. The DV full selection requirements, $n_{Tracks} \geq 3$ and $m_{DV} > 20$ GeV are visualized with a black arrow.
The observed event yields in the control, validation and signal regions are shown for the MET Trigger selections, along with the predicted background yields. The bottom panel shows the ratio of observed events to the total background yields. The errors represent the total uncertainty of the backgrounds prediction, including the statistical and systematic uncertainties added in quadrature.
The observed event yields in the control, validation and signal regions are shown for the MET Trigger selections, along with the predicted background yields. The bottom panel shows the ratio of observed events to the total background yields. The errors represent the total uncertainty of the backgrounds prediction, including the statistical and systematic uncertainties added in quadrature.
The observed event yields in the control, validation and signal regions are shown for the Muon Trigger selections, along with the predicted background yields. The bottom panel shows the ratio of observed events to the total background yields. The errors represent the total uncertainty of the backgrounds prediction, including the statistical and systematic uncertainties added in quadrature.
The observed event yields in the control, validation and signal regions are shown for the Muon Trigger selections, along with the predicted background yields. The bottom panel shows the ratio of observed events to the total background yields. The errors represent the total uncertainty of the backgrounds prediction, including the statistical and systematic uncertainties added in quadrature.
Expected exclusion limits at 95% CL on m($\tilde{t}$) as a function of $\tau(\tilde{t})$.
Expected exclusion limits at 95% CL on m($\tilde{t}$) as a function of $\tau(\tilde{t})$.
Expected (1 sigma band) exclusion limits at 95% CL on m($\tilde{t}$) as a function of $\tau(\tilde{t})$.
Expected (1 sigma band) exclusion limits at 95% CL on m($\tilde{t}$) as a function of $\tau(\tilde{t})$.
Expected (2 sigma band) exclusion limits at 95% CL on m($\tilde{t}$) as a function of $\tau(\tilde{t})$.
Expected (2 sigma band) exclusion limits at 95% CL on m($\tilde{t}$) as a function of $\tau(\tilde{t})$.
Observed exclusion limits at 95% CL on m($\tilde{t}$) as a function of $\tau(\tilde{t})$.
Observed exclusion limits at 95% CL on m($\tilde{t}$) as a function of $\tau(\tilde{t})$.
Observed (+1 sigma) exclusion limits at 95% CL on m($\tilde{t}$) as a function of $\tau(\tilde{t})$.
Observed (+1 sigma) exclusion limits at 95% CL on m($\tilde{t}$) as a function of $\tau(\tilde{t})$.
Observed (-1 sigma) exclusion limits at 95% CL on m($\tilde{t}$) as a function of $\tau(\tilde{t})$.
Observed (-1 sigma) exclusion limits at 95% CL on m($\tilde{t}$) as a function of $\tau(\tilde{t})$.
Exclusion limits on the production cross section as a function of m($\tilde{t}$) are shown for several values of $\tau(\tilde{t})$ along with the nominal signal production cross section and its theoretical uncertainty.
Exclusion limits on the production cross section as a function of m($\tilde{t}$) are shown for several values of $\tau(\tilde{t})$ along with the nominal signal production cross section and its theoretical uncertainty.
Parameterized event selection efficiencies for the $E_{T}^{miss}$ Trigger SR. The event-level efficiencies for each SR are extracted for all events passing the acceptance of the corresponding SR.
Parameterized event selection efficiencies for the $E_{T}^{miss}$ Trigger SR. The event-level efficiencies for each SR are extracted for all events passing the acceptance of the corresponding SR.
Parameterized event selection efficiencies for the Muon Trigger SR. The event-level efficiencies for each SR are extracted for all events passing the acceptance of the corresponding SR.
Parameterized event selection efficiencies for the Muon Trigger SR. The event-level efficiencies for each SR are extracted for all events passing the acceptance of the corresponding SR.
Parameterized muon-level reconstruction efficiencies as a function of the muon $p_{T}$ and $d_{0}$. The muon-level efficiencies are extracted using muons passing the muon acceptance criteria.
Parameterized muon-level reconstruction efficiencies as a function of the muon $p_{T}$ and $d_{0}$. The muon-level efficiencies are extracted using muons passing the muon acceptance criteria.
Parameterized vertex-level reconstruction efficiencies as a function of the radial position of the truth vertex. The efficiency is calculated independent of the muons originating from this truth vertex.
Parameterized vertex-level reconstruction efficiencies as a function of the radial position of the truth vertex. The efficiency is calculated independent of the muons originating from this truth vertex.
Parameterized vertex-level reconstruction efficiencies as a function of the radial position of the truth vertex. The efficiency is calculated only for truth vertices which have a muon originating from them which is matched to a reconstructed muon.
Parameterized vertex-level reconstruction efficiencies as a function of the radial position of the truth vertex. The efficiency is calculated only for truth vertices which have a muon originating from them which is matched to a reconstructed muon.
The $p_{T}$ distribution of all muons originating from LLP decays in the samples used to calculate and validate the efficiencies.
The $p_{T}$ distribution of all muons originating from LLP decays in the samples used to calculate and validate the efficiencies.
The invariant mass and multiplicity of selected decay products of all truth vertices used in the calculation and validation of the reconstructed efficiencies.
The invariant mass and multiplicity of selected decay products of all truth vertices used in the calculation and validation of the reconstructed efficiencies.
A search is presented for new phenomena in events characterised by high jet multiplicity, no leptons (electrons or muons), and four or more jets originating from the fragmentation of $b$-quarks ($b$-jets). The search uses 139 fb$^{-1}$ of $\sqrt{s}$ = 13 TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider during Run 2. The dominant Standard Model background originates from multijet production and is estimated using a data-driven technique based on an extrapolation from events with low $b$-jet multiplicity to the high $b$-jet multiplicities used in the search. No significant excess over the Standard Model expectation is observed and 95% confidence-level limits that constrain simplified models of R-parity-violating supersymmetry are determined. The exclusion limits reach 950 GeV in top-squark mass in the models considered.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=stbchionly_obs">Stop to bottom quark and chargino exclusion contour (Obs.)</a> <li><a href="?table=stbchionly_exp">Stop to bottom quark and chargino exclusion contour (Exp.)</a> <li><a href="?table=stbchi_obs">Stop to higgsino LSP exclusion contour (Obs.)</a> <li><a href="?table=stbchi_exp">Stop to higgsino LSP exclusion contour (Exp.)</a> <li><a href="?table=sttN_obs">Stop to top quark and neutralino exclusion contour (Obs.)</a> <li><a href="?table=sttN_exp">Stop to top quark and neutralino exclusion contour (Exp.)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=stbchionly_xSecUL_obs">Obs Xsection upper limit in stop to bottom quark and chargino</a> <li><a href="?table=stop_xSecUL_obs">Obs Xsection upper limit in higgsino LSP</a> <li><a href="?table=stbchionly_xSecUL_exp">Exp Xsection upper limit in stop to bottom quark and chargino</a> <li><a href="?table=stop_xSecUL_exp">Exp Xsection upper limit in higgsino LSP</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SR_yields">SR_yields</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow">cutflow</a> </ul> <b>Acceptance and efficiencies:</b> As explained in <a href="https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults#summary_of_auxiliary_material">the twiki</a>. <ul> <li> <b>stbchi_6je4be:</b> <a href="?table=stbchi_Acc_6je4be">stbchi_Acc_6je4be</a> <a href="?table=stbchi_Eff_6je4be">stbchi_Eff_6je4be</a> <li> <b>stbchi_7je4be:</b> <a href="?table=stbchi_Acc_7je4be">stbchi_Acc_7je4be</a> <a href="?table=stbchi_Eff_7je4be">stbchi_Eff_7je4be</a> <li> <b>stbchi_8je4be:</b> <a href="?table=stbchi_Acc_8je4be">stbchi_Acc_8je4be</a> <a href="?table=stbchi_Eff_8je4be">stbchi_Eff_8je4be</a> <li> <b>stbchi_9ji4be:</b> <a href="?table=stbchi_Acc_9ji4be">stbchi_Acc_9ji4be</a> <a href="?table=stbchi_Eff_9ji4be">stbchi_Eff_9ji4be</a> <li> <b>stbchi_6je5bi:</b> <a href="?table=stbchi_Acc_6je5bi">stbchi_Acc_6je5bi</a> <a href="?table=stbchi_Eff_6je5bi">stbchi_Eff_6je5bi</a> <li> <b>stbchi_7je5bi:</b> <a href="?table=stbchi_Acc_7je5bi">stbchi_Acc_7je5bi</a> <a href="?table=stbchi_Eff_7je5bi">stbchi_Eff_7je5bi</a> <li> <b>stbchi_8je5bi:</b> <a href="?table=stbchi_Acc_8je5bi">stbchi_Acc_8je5bi</a> <a href="?table=stbchi_Eff_8je5bi">stbchi_Eff_8je5bi</a> <li> <b>stbchi_9ji5bi:</b> <a href="?table=stbchi_Acc_9ji5bi">stbchi_Acc_9ji5bi</a> <a href="?table=stbchi_Eff_9ji5bi">stbchi_Eff_9ji5bi</a> <li> <b>stbchi_8ji5bi:</b> <a href="?table=stbchi_Acc_8ji5bi">stbchi_Acc_8ji5bi</a> <a href="?table=stbchi_Eff_8ji5bi">stbchi_Eff_8ji5bi</a> <li> <b>sttN_6je4be:</b> <a href="?table=sttN_Acc_6je4be">sttN_Acc_6je4be</a> <a href="?table=sttN_Eff_6je4be">sttN_Eff_6je4be</a> <li> <b>sttN_7je4be:</b> <a href="?table=sttN_Acc_7je4be">sttN_Acc_7je4be</a> <a href="?table=sttN_Eff_7je4be">sttN_Eff_7je4be</a> <li> <b>sttN_8je4be:</b> <a href="?table=sttN_Acc_8je4be">sttN_Acc_8je4be</a> <a href="?table=sttN_Eff_8je4be">sttN_Eff_8je4be</a> <li> <b>sttN_9ji4be:</b> <a href="?table=sttN_Acc_9ji4be">sttN_Acc_9ji4be</a> <a href="?table=sttN_Eff_9ji4be">sttN_Eff_9ji4be</a> <li> <b>sttN_6je5bi:</b> <a href="?table=sttN_Acc_6je5bi">sttN_Acc_6je5bi</a> <a href="?table=sttN_Eff_6je5bi">sttN_Eff_6je5bi</a> <li> <b>sttN_7je5bi:</b> <a href="?table=sttN_Acc_7je5bi">sttN_Acc_7je5bi</a> <a href="?table=sttN_Eff_7je5bi">sttN_Eff_7je5bi</a> <li> <b>sttN_8je5bi:</b> <a href="?table=sttN_Acc_8je5bi">sttN_Acc_8je5bi</a> <a href="?table=sttN_Eff_8je5bi">sttN_Eff_8je5bi</a> <li> <b>sttN_9ji5bi:</b> <a href="?table=sttN_Acc_9ji5bi">sttN_Acc_9ji5bi</a> <a href="?table=sttN_Eff_9ji5bi">sttN_Eff_9ji5bi</a> <li> <b>sttN_8ji5bi:</b> <a href="?table=sttN_Acc_8ji5bi">sttN_Acc_8ji5bi</a> <a href="?table=sttN_Eff_8ji5bi">sttN_Eff_8ji5bi</a> </ul> <b>Truth Code snippets</b> and <b>SLHA</a> files are available under "Resources" (purple button on the left)
The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{\pm}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown for $B(\tilde{t} \rightarrow b \chi^{+}_{1})$ equal to unity.
The expected exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{\pm}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contour are excluded. Limits are shown for $B(\tilde{t} \rightarrow b \chi^{+}_{1})$ equal to unity.
The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown in the case of a higgsino LSP. The results are constrained by the kinematic limits of the top-squark decay into a chargino and a bottom quark (upper diagonal line) and into a neutralino and a top quark (lower diagonal line), respectively.
The expected exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown in the case of a higgsino LSP. The results are constrained by the kinematic limits of the top-squark decay into a chargino and a bottom quark (upper diagonal line) and into a neutralino and a top quark (lower diagonal line), respectively.
The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown for the region $m_{\tilde{t}} - m_{\tilde{\chi}^0_{1,2}, \tilde{\chi}^\pm_{1}} \geq m_\text{top}$ where $B(\tilde{t} \rightarrow b \chi^{+}_{1}) = B(\tilde{t} \rightarrow t \chi^{0}_{1,2}) = 0.5$.
The expected exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown for the region $m_{\tilde{t}} - m_{\tilde{\chi}^0_{1,2}, \tilde{\chi}^\pm_{1}} \geq m_\text{top}$ where $B(\tilde{t} \rightarrow b \chi^{+}_{1}) = B(\tilde{t} \rightarrow t \chi^{0}_{1,2}) = 0.5$.
Observed model-dependent upper limit on the cross section for the $(\tilde{t},\tilde{\chi}^{\pm}_{1})$ signal grid. Limits are shown for $B(\tilde{t} \rightarrow b \chi^{+}_{1})$ equal to unity.
Observed model-dependent upper limit on the cross section for the $(\tilde{t},\tilde{\chi}^{\pm}_{1} / \tilde{\chi}^{0}_{1,2})$ signal grid. Limits are shown in the case of a higgsino LSP. The results are constrained by the kinematic limits of the top-squark decay into a chargino and a bottom quark (upper diagonal line) and into a neutralino and a top quark (lower diagonal line), respectively.
Expected model-dependent upper limit on the cross section for the $(\tilde{t},\tilde{\chi}^{\pm}_{1})$ signal grid. Limits are shown for $B(\tilde{t} \rightarrow b \chi^{+}_{1})$ equal to unity.
Expected model-dependent upper limit on the cross section for the $(\tilde{t},\tilde{\chi}^{\pm}_{1} / \tilde{\chi}^{0}_{1,2})$ signal grid. Limits are shown in the case of a higgsino LSP. The results are constrained by the kinematic limits of the top-squark decay into a chargino and a bottom quark (upper diagonal line) and into a neutralino and a top quark (lower diagonal line), respectively.
Expected background and observed number of events in different jet and $b$-tag multiplicity bins.
Cut flow for a model of top-squark pair production with the top squark decaying to a $b$-quark and a chargino. The chargino decays through the non-zero RPV coupling $\lambda^{''}_{323}$ via a virtual top squark to $bbs$ quark triplets ($m_{\tilde{t}}$ = 800 GeV, $m_{\tilde{\chi}^{\pm}_{1}}$ = 750 GeV). The multijet trigger consists of four jets satisfying $p_{\text{T}}\geq(100)120$ GeV for the 2015-2016 (2017-2018) data period. Selections with negligible inefficiencies on the given sample, such as data quality requirements, are not displayed. The numbers in $N_{\text{weighted}}$ are normalized by the integrated luminosity of 139 fb$^{-1}$.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
A search for the direct production of the supersymmetric partners of $\tau$-leptons (staus) in final states with two hadronically decaying $\tau$-leptons is presented. The analysis uses a dataset of $pp$ collisions corresponding to an integrated luminosity of $139$ fb$^{-1}$, recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected Standard Model background is observed. Limits are derived in scenarios of direct production of stau pairs with each stau decaying into the stable lightest neutralino and one $\tau$-lepton in simplified models where the two stau mass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidence level for a massless lightest neutralino.
The observed upper limits on the model cross-section in units of pb for simplified models with combined ${\tilde{\tau}}^{+}_{R,L} {\tilde{\tau}}^{-}_{R,L}$ production. Three points at ${M({\tilde{\chi}}^{0}_{1})}=200GeV$ were removed from the plot but kept in the table because they overlapped with the plot's legend and are far from the exclusion contour.
The observed upper limits on the model cross-section in units of pb for simplified models with combined ${\tilde{\tau}}^{+}_{R,L} {\tilde{\tau}}^{-}_{R,L}$ production. Three points at ${M({\tilde{\chi}}^{0}_{1})}=200GeV$ were removed from the plot but kept in the table because they overlapped with the plot's legend and are far from the exclusion contour.
The observed upper limits on the model cross-section in units of pb for simplified models with ${\tilde{\tau}}_L {\tilde{\tau}}_L$ only production. Three points at $M({\tilde{\chi}}^{0}_{1})=200GeV$ were removed from the plot but kept in the table because they overlapped with the plot's legend and are far from the exclusion contour.
The observed upper limits on the model cross-section in units of pb for simplified models with ${\tilde{\tau}}_L {\tilde{\tau}}_L$ only production. Three points at $M({\tilde{\chi}}^{0}_{1})=200GeV$ were removed from the plot but kept in the table because they overlapped with the plot's legend and are far from the exclusion contour.
The observed 95\% CL exclusion contours for the combined fit of SR-lowMass and SR-highMass for simplified models with combined ${\tilde{\tau}}^{+}_{R,L} {\tilde{\tau}}^{-}_{R,L}$ production.
The observed 95\% CL exclusion contours for the combined fit of SR-lowMass and SR-highMass for simplified models with combined ${\tilde{\tau}}^{+}_{R,L} {\tilde{\tau}}^{-}_{R,L}$ production.
The expected 95% CL exclusion contours for the combined fit of SR-lowMass and SR-highMass for simplified models with combined ${\tilde{\tau}}^{+}_{R,L} {\tilde{\tau}}^{-}_{R,L}$ production.
The expected 95% CL exclusion contours for the combined fit of SR-lowMass and SR-highMass for simplified models with combined ${\tilde{\tau}}^{+}_{R,L} {\tilde{\tau}}^{-}_{R,L}$ production.
The observed 95% CL exclusion contours for the combined fit of SR-lowMass and SR-highMass for simplified models with ${\tilde{\tau}}_L {\tilde{\tau}}_L$ only production.
The observed 95% CL exclusion contours for the combined fit of SR-lowMass and SR-highMass for simplified models with ${\tilde{\tau}}_L {\tilde{\tau}}_L$ only production.
The expected 95% CL exclusion contours for the combined fit of SR-lowMass and SR-highMass for simplified models with ${\tilde{\tau}}_L {\tilde{\tau}}_L$ only production.
The expected 95% CL exclusion contours for the combined fit of SR-lowMass and SR-highMass for simplified models with ${\tilde{\tau}}_L {\tilde{\tau}}_L$ only production.
Observed 95% CL exclusion limits for simplified models with direct stau pair production in SR-lowMass.
Observed 95% CL exclusion limits for simplified models with direct stau pair production in SR-lowMass.
Expected 95% CL exclusion limits for simplified models with direct stau pair production in SR-lowMass.
Expected 95% CL exclusion limits for simplified models with direct stau pair production in SR-lowMass.
Observed 95% CL exclusion limits for simplified models with direct stau pair production in SR-highMass.
Observed 95% CL exclusion limits for simplified models with direct stau pair production in SR-highMass.
Expected 95% CL exclusion limits for simplified models with direct stau pair production in SR-highMass.
Expected 95% CL exclusion limits for simplified models with direct stau pair production in SR-highMass.
Signal acceptance in SR highMass for combined stau final states
Signal acceptance in SR highMass for combined stau final states
Signal acceptance in SR lowMass for combined stau final states
Signal acceptance in SR lowMass for combined stau final states
Signal efficiency in SR highMass for combined stau final states
Signal efficiency in SR highMass for combined stau final states
Signal efficiency in SR lowMass for combined stau final states
Signal efficiency in SR lowMass for combined stau final states
Signal acceptance*efficiency in SR highMass for combined stau final states
Signal acceptance*efficiency in SR highMass for combined stau final states
Signal acceptance*efficiency in SR lowMass for combined stau final states
Signal acceptance*efficiency in SR lowMass for combined stau final states
Cutflow for two reference points (${\tilde{\tau}}^{+}_{R,L} {\tilde{\tau}}^{-}_{R,L}$ production) in SR. The column labelled $N_{weighted}$ shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$, while $N_{raw}$ in brackets shows the results for the generated number of events. The quoted uncertainties are statistical only. The "Generator filter" includes the requirements that two $\tau$ in the event have ${p}_{T} > 15$ GeV and $|\eta| <$ 2.6. The "Baseline Cut" includes the requirement of two baseline $\tau$ with a minimum value at 0.01 of the boosted decision tree discriminant (JetBDTSigTransMin $>$ 0.01) and ${p}_{T, \tau_{1}} > 50$ GeV and ${p}_{T, \tau_{2}} > 40$ GeV. At the step "Trigger & offline cuts", the following requirements are applied: the event is recorded using the asymmetric di-$\tau$ trigger (di-$\tau$ $E_{T}^{miss}$ trigger) in SR-lowMass (SR-highMass), and the lepton $p_{T}$ and $E_{T}^{miss}$ are required at plateau.
Cutflow for two reference points (${\tilde{\tau}}^{+}_{R,L} {\tilde{\tau}}^{-}_{R,L}$ production) in SR. The column labelled $N_{weighted}$ shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$, while $N_{raw}$ in brackets shows the results for the generated number of events. The quoted uncertainties are statistical only. The "Generator filter" includes the requirements that two $\tau$ in the event have ${p}_{T} > 15$ GeV and $|\eta| <$ 2.6. The "Baseline Cut" includes the requirement of two baseline $\tau$ with a minimum value at 0.01 of the boosted decision tree discriminant (JetBDTSigTransMin $>$ 0.01) and ${p}_{T, \tau_{1}} > 50$ GeV and ${p}_{T, \tau_{2}} > 40$ GeV. At the step "Trigger & offline cuts", the following requirements are applied: the event is recorded using the asymmetric di-$\tau$ trigger (di-$\tau$ $E_{T}^{miss}$ trigger) in SR-lowMass (SR-highMass), and the lepton $p_{T}$ and $E_{T}^{miss}$ are required at plateau.
Observed and expected numbers of events in the control and signal regions where all control and signal region bins are included as constraints in the likelihood. The expected event yields of SM processes are given after the background-only fit. The entries marked as "--" are negligible. The uncertainties correspond to the sum in quadrature of statistical and systematic uncertainties. The correlation of systematic uncertainties among control regions and among background processes is fully taken into account.
Observed and expected numbers of events in the control and signal regions where all control and signal region bins are included as constraints in the likelihood. The expected event yields of SM processes are given after the background-only fit. The entries marked as "--" are negligible. The uncertainties correspond to the sum in quadrature of statistical and systematic uncertainties. The correlation of systematic uncertainties among control regions and among background processes is fully taken into account.
The post-fit $m_{T2}$ distribution for SR-lowMass. The stacked histograms show the expected SM backgrounds. The multi-jet contribution is estimated from data using the ABCD method. The contributions of multi-jet and $W$+jets events are scaled with the corresponding normalization factors derived from the background-only fit. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distributions from the SUSY reference points are also shown as dashed lines. The last bin includes the overflow events.
The post-fit $m_{T2}$ distribution for SR-lowMass. The stacked histograms show the expected SM backgrounds. The multi-jet contribution is estimated from data using the ABCD method. The contributions of multi-jet and $W$+jets events are scaled with the corresponding normalization factors derived from the background-only fit. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distributions from the SUSY reference points are also shown as dashed lines. The last bin includes the overflow events.
The post-fit $m_{T2}$ distribution for SR-highMass. The stacked histograms show the expected SM backgrounds. The multi-jet contribution is estimated from data using the ABCD method. The contributions of multi-jet and $W$+jets events are scaled with the corresponding normalization factors derived from the background-only fit. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distributions from the SUSY reference points are also shown as dashed lines. The last bin includes the overflow events.
The post-fit $m_{T2}$ distribution for SR-highMass. The stacked histograms show the expected SM backgrounds. The multi-jet contribution is estimated from data using the ABCD method. The contributions of multi-jet and $W$+jets events are scaled with the corresponding normalization factors derived from the background-only fit. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distributions from the SUSY reference points are also shown as dashed lines. The last bin includes the overflow events.
The $m_{T2}$ post-fit distributions in the multi-jet background validation region VR-F (lowMass). The stacked histograms show the contribution of each relevant SM process. The multi-jet shape is taken from VR-E in the ABCD method and the normalization is determined by the transfer factor $T$ and rescaled by a correction factor determined by the fit. The hatched bands represent the combined statistical and systematic uncertainties in the sum of the SM backgrounds shown. For illustration, the distributions of the SUSY reference points are also shown as dashed lines.
The $m_{T2}$ post-fit distributions in the multi-jet background validation region VR-F (lowMass). The stacked histograms show the contribution of each relevant SM process. The multi-jet shape is taken from VR-E in the ABCD method and the normalization is determined by the transfer factor $T$ and rescaled by a correction factor determined by the fit. The hatched bands represent the combined statistical and systematic uncertainties in the sum of the SM backgrounds shown. For illustration, the distributions of the SUSY reference points are also shown as dashed lines.
The $m_{T2}$ post-fit distributions in the multi-jet background validation VR-F (highMass). The stacked histograms show the contribution of each relevant SM process. The multi-jet shape is taken from VR-E in the ABCD method and the normalization is determined by the transfer factor $T$ and rescaled by a correction factor determined by the fit. The hatched bands represent the combined statistical and systematic uncertainties in the sum of the SM backgrounds shown. For illustration, the distributions of the SUSY reference points are also shown as dashed lines.
The $m_{T2}$ post-fit distributions in the multi-jet background validation VR-F (highMass). The stacked histograms show the contribution of each relevant SM process. The multi-jet shape is taken from VR-E in the ABCD method and the normalization is determined by the transfer factor $T$ and rescaled by a correction factor determined by the fit. The hatched bands represent the combined statistical and systematic uncertainties in the sum of the SM backgrounds shown. For illustration, the distributions of the SUSY reference points are also shown as dashed lines.
The $E_{T}^{miss}$ post-fit distributions in the multi-jet background validation region VR-F (lowMass). The stacked histograms show the contribution of each relevant SM process. The multi-jet shape is taken from VR-E in the ABCD method and the normalization is determined by the transfer factor $T$ and rescaled by a correction factor determined by the fit. The hatched bands represent the combined statistical and systematic uncertainties in the sum of the SM backgrounds shown. For illustration, the distributions of the SUSY reference points are also shown as dashed lines.
The $E_{T}^{miss}$ post-fit distributions in the multi-jet background validation region VR-F (lowMass). The stacked histograms show the contribution of each relevant SM process. The multi-jet shape is taken from VR-E in the ABCD method and the normalization is determined by the transfer factor $T$ and rescaled by a correction factor determined by the fit. The hatched bands represent the combined statistical and systematic uncertainties in the sum of the SM backgrounds shown. For illustration, the distributions of the SUSY reference points are also shown as dashed lines.
The $E_{T}^{miss}$ post-fit distributions in the multi-jet background validation region VR-F (highMass). The stacked histograms show the contribution of each relevant SM process. The multi-jet shape is taken from VR-E in the ABCD method and the normalization is determined by the transfer factor $T$ and rescaled by a correction factor determined by the fit. The hatched bands represent the combined statistical and systematic uncertainties in the sum of the SM backgrounds shown. For illustration, the distributions of the SUSY reference points are also shown as dashed lines.
The $E_{T}^{miss}$ post-fit distributions in the multi-jet background validation region VR-F (highMass). The stacked histograms show the contribution of each relevant SM process. The multi-jet shape is taken from VR-E in the ABCD method and the normalization is determined by the transfer factor $T$ and rescaled by a correction factor determined by the fit. The hatched bands represent the combined statistical and systematic uncertainties in the sum of the SM backgrounds shown. For illustration, the distributions of the SUSY reference points are also shown as dashed lines.
The pre-fit $m_{T2}$ distribution in the $WCR$. The SM backgrounds other than multi-jet production are estimated from MC simulation. The multi-jet contribution is estimated from data using the OS--SS method. The hatched bands represent the combined statistical and systematic uncertainties of the total SM background. For illustration, the distributions of the SUSY reference points are also shown as dashed lines.
The pre-fit $m_{T2}$ distribution in the $WCR$. The SM backgrounds other than multi-jet production are estimated from MC simulation. The multi-jet contribution is estimated from data using the OS--SS method. The hatched bands represent the combined statistical and systematic uncertainties of the total SM background. For illustration, the distributions of the SUSY reference points are also shown as dashed lines.
The post-fit yields in the $WVR$, $TVRs$, $ZVRs$ and $VVVRs$. The SM backgrounds other than multi-jet production are estimated from MC simulation. The multi-jet contribution is negligible and is estimated from data using the ABCD method, using CRs obtained with the same technique used for the SRs. The hatched bands represent the combined statistical and systematic uncertainties of the total SM background. For illustration, the distributions of the SUSY reference points are also shown as dashed lines. The lower panels show the ratio of data to the SM background estimate.
The post-fit yields in the $WVR$, $TVRs$, $ZVRs$ and $VVVRs$. The SM backgrounds other than multi-jet production are estimated from MC simulation. The multi-jet contribution is negligible and is estimated from data using the ABCD method, using CRs obtained with the same technique used for the SRs. The hatched bands represent the combined statistical and systematic uncertainties of the total SM background. For illustration, the distributions of the SUSY reference points are also shown as dashed lines. The lower panels show the ratio of data to the SM background estimate.
A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 TeV and 1.5 TeV, respectively, where $\tan\beta$ is the ratio of the vacuum expectation values of the two Higgs doublets.
Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and expected 95% CL upper limits on the gluon-gluon fusion Higgs boson production cross section times ditau branching fraction as a function of the Higgs boson mass.
Observed and expected 95% CL upper limits on the gluon-gluon fusion Higgs boson production cross section times ditau branching fraction as a function of the Higgs boson mass.
Observed and expected 95% CL upper limits on the gluon-gluon fusion Higgs boson production cross section times ditau branching fraction as a function of the Higgs boson mass.
Observed and expected 95% CL upper limits on the gluon-gluon fusion Higgs boson production cross section times ditau branching fraction as a function of the Higgs boson mass.
Observed and expected 95% CL upper limits on the b-associated Higgs boson production cross section times ditau branching fraction as a function of the boson mass.
Observed and expected 95% CL upper limits on the b-associated Higgs boson production cross section times ditau branching fraction as a function of the boson mass.
Observed and expected 95% CL upper limits on the b-associated Higgs boson production cross section times ditau branching fraction as a function of the boson mass.
Observed and expected 95% CL upper limits on the b-associated Higgs boson production cross section times ditau branching fraction as a function of the boson mass.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered for the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. No theoretical uncertainty is considered when computing these limits.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60.
Acceptance times efficiency for a scalar boson produced by gluon-gluon fusion as a function of the scalar boson mass.
Acceptance times efficiency for a scalar boson produced by gluon-gluon fusion as a function of the scalar boson mass.
Acceptance times efficiency for a scalar boson produced by gluon-gluon fusion as a function of the scalar boson mass.
Acceptance times efficiency for a scalar boson produced by gluon-gluon fusion as a function of the scalar boson mass.
Acceptance times efficiency for a scalar boson produced by b-associated production as a function of the scalar boson mass.
Acceptance times efficiency for a scalar boson produced by b-associated production as a function of the scalar boson mass.
Acceptance times efficiency for a scalar boson produced by b-associated production as a function of the scalar boson mass.
Acceptance times efficiency for a scalar boson produced by b-associated production as a function of the scalar boson mass.
Observed 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.
Observed 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.
Observed 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.
Observed 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.
Expected 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.
Expected 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.
Expected 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.
Expected 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 200 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 200 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 200 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 200 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 250 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 250 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 250 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 250 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 300 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 300 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 300 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 300 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 350 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 350 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 350 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 350 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 400 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 400 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 400 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 400 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 500 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 500 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 500 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 500 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 600 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 600 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 600 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 600 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 700 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 700 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 700 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 700 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 800 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 800 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 800 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 800 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1000 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1000 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1000 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1000 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1200 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1200 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1200 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1200 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1500 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1500 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1500 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1500 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2000 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2000 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2000 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2000 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2500 GeV signal mass point is shown in the HEPData table.
Two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2500 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2500 GeV signal mass point is shown in the HEPData table.
Observed two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 200 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 200 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 200 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 250 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 250 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 250 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 300 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 300 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 300 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 350 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 350 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 350 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 400 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 400 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 400 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 600 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 600 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 600 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 700 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 700 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 700 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 800 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 800 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 800 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1000 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1000 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1000 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1200 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1200 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1200 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 1500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2000 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2000 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2000 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2500 GeV signal mass point is shown in the HEPData table.
Expected two dimensional likelihood scan of the gluon-gluon fusion cross section times branching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the scalar boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively. The value of $2\Delta(\mathrm{NLL})$ for 2500 GeV signal mass point is shown in the HEPData table.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the hMSSM scenario. The lowest value of $\tan\beta$ considered by the hMSSM scenario is 0.8 and the highest value of mass is 2 TeV. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\chi})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\chi})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\chi})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\chi})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\chi})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\chi})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\chi})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\chi})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\chi})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\chi})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\chi})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\chi})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The observed 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\tau})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\tau})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\tau})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\tau})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\tau})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\tau})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\tau})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\tau})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\tau})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\tau})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(\widetilde{\tau})$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(\widetilde{\tau})$ scenario is 0.5. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The range of $\tan\beta$ shown in the paper figure and the HEPData is from 1 to 60. The theoretical uncertainty of signal cross section is considered.
The observed 95% CL upper limits with one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(alignment)$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 1.0. The highest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 20.0. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(alignment)$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 1.0. The highest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 20.0. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(alignment)$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 1.0. The highest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 20.0. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus one sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(alignment)$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 1.0. The highest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 20.0. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with plus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(alignment)$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 1.0. The highest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 20.0. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The theoretical uncertainty of signal cross section is considered.
The expected 95% CL upper limits with minus two sigma on $\tan\beta$ as a function of $m_{A}$ in the $M_{h}^{125}(alignment)$ scenario. The lowest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 1.0. The highest value of $\tan\beta$ considered by the $M_{h}^{125}(alignment)$ scenario is 20.0. The points in the region which is called "Not applicable" in the paper figure are kept in the HEPData table. Linear connection is applied in the range of signal mass points from 400 to 1000 GeV in the paper figure. The theoretical uncertainty of signal cross section is considered.
The results of a search for direct pair production of top squarks and for dark matter in events with two opposite-charge leptons (electrons or muons), jets and missing transverse momentum are reported, using 139 fb$^{-1}$ of integrated luminosity from proton-proton collisions at $\sqrt{s} = 13$ TeV, collected by the ATLAS detector at the Large Hadron Collider during Run 2 (2015-2018). This search considers the pair production of top squarks and is sensitive across a wide range of mass differences between the top squark and the lightest neutralino. Additionally, spin-0 mediator dark-matter models are considered, in which the mediator is produced in association with a pair of top quarks. The mediator subsequently decays to a pair of dark-matter particles. No significant excess of events is observed above the Standard Model background, and limits are set at 95% confidence level. The results exclude top squark masses up to about 1 TeV, and masses of the lightest neutralino up to about 500 GeV. Limits on dark-matter production are set for scalar (pseudoscalar) mediator masses up to about 250 (300) GeV.
Two-body selection. Distributions of $m_{T2}$ in $SR^{2-body}_{110,\infty}$ for (a) different-flavour and (b) same-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference dark-matter signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction.
Two-body selection. Distributions of $m_{T2}$ in $SR^{2-body}_{110,\infty}$ for (a) different-flavour and (b) same-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference dark-matter signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Four-body selection. (a) distributions of $E_{T}^{miss}$ in $SR^{4-body}_{Small\,\Delta m}$ and (b) distribution of $R_{2\ell 4j}$ in $SR^{4-body}_{Large\,\Delta m}$ for events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panel indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Four-body selection. (a) distributions of $E_{T}^{miss}$ in $SR^{4-body}_{Small\,\Delta m}$ and (b) distribution of $R_{2\ell 4j}$ in $SR^{4-body}_{Large\,\Delta m}$ for events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panel indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the Observed limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Two-body selection. Background fit results for $\mathrm{CR}^{\mathrm{2-body}}_{t\bar{t}}$, $\mathrm{CR}^{\mathrm{2-body}}_{t\bar{t}Z}$, $\mathrm{VR}^{\mathrm{2-body}}_{t\bar{t}, DF}$, $\mathrm{VR}^{\mathrm{2-body}}_{t\bar{t}, SF}$ and $\mathrm{VR}^{\mathrm{2-body}}_{t\bar{t} Z}$. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Three-body selection. Background fit results for $\mathrm{CR}^{\mathrm{3-body}}_{t\bar{t}}$, $\mathrm{CR}^{\mathrm{3-body}}_{VV}$, $\mathrm{CR}^{\mathrm{2-body}}_{t\bar{t}Z}$, $\mathrm{VR}^{\mathrm{3-body}}_{VV}$, $\mathrm{VR(1)}^{\mathrm{3-body}}_{t\bar{t}}$ and $\mathrm{VR(2)}^{\mathrm{3-body}}_{t\bar{t}}$. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Four-body selection. Background fit results for $\mathrm{CR}^{\mathrm{4-body}}_{t\bar{t}}$,$\mathrm{CR}^{\mathrm{4-body}}_{VV}$, $\mathrm{VR}^{\mathrm{4-body}}_{t\bar{t}}$, $VR^{4-body}_{VV}$ and $\mathrm{VR}^{\mathrm{4-body}}_{VV,lll}$. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Two-body selection. Background fit results for the different-flavour leptons binned SRs. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Two-body selection. Background fit results for the same-flavour leptons binned SRs. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Three-body selection. Observed event yields and background fit results for the three-body selection SRs. The ''Others'' category contains contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Four-body selection. Observed event yields and background fit results for SR$^{\mathrm{4-body}}_{\mathrm{Small}\,\Delta m}$ and SR$^{\mathrm{4-body}}_{\mathrm{Large}\,\Delta m}$. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Exclusion limits contours (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}^0_1$ with 100% branching ratio in $\tilde{t}_1--\tilde{\chi}^0_1$ masses planes. The dashed lines and the shaded bands are the expected limit and its $\pm 1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The exclusion limits contours for the two-body, three-body and four-body selections are respectively shown in blue, green and red.
Exclusion limits contours (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}^0_1$ with 100% branching ratio in $\tilde{t}_1--\tilde{\chi}^0_1$ masses planes. The dashed lines and the shaded bands are the expected limit and its $\pm 1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The exclusion limits contours for the two-body, three-body and four-body selections are respectively shown in blue, green and red.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm 1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty.The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty.The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Four-body selection Efficiency (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Four-body selection Efficiency (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta\ m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Four-body selection acceptance (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Four-body selection acceptance (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Two-body selection The numbers indicate the observed upper limits on the signal strenght for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the observed upper limits on the signal strenght for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the observed upper limits on the signal strenght for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Three-body selection The numbers indicate the upper limits on the signal strenght for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Four-body selection The numbers indicate the upper limits on the signal strenght for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Two-body selection The numbers indicate the upper limits on the signal cross-section for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the upper limits on the signal cross-section for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the upper limits on the signal cross-section for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Three-body selection The numbers indicate the upper limits on the signal cross-section for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Four-body selection The numbers indicate the upper limits on the signal cross-section for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Two-body selection. Background fit results for the $inclusive$ SRs. The Others category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Note that the individual uncertainties can be correlated, and do not necessarily add up quadratically to the total background uncertainty.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=600~ GeV$ and $m(\tilde{\chi}^0_1)=400~ GeV$ in the SRs for the two-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the scalar signal model $t\bar{t} + \phi $ with $m(\phi)=150~ GeV$ and $m(\chi)=1~ GeV$ in the SRs for the two-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the pseudoscalar signal model $t\bar{t} + a $ with $m(a)=150~ GeV$ and $m(\chi)=1~ GeV$ in the SRs for the two-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=385~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=400~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=430~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=460~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}^0_1$ with $m(\tilde{t}_1)=400~ GeV$ and $m(\tilde{\chi}^0_1)=380~ GeV$ in the SRs for the four-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}^0_1$ with $m(\tilde{t}_1)=460~ GeV$ and $m(\tilde{\chi}^0_1)=415~ GeV$ in the SRs for the four-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}^0_1$ with $m(\tilde{t}_1)=400~ GeV$ and $m(\tilde{\chi}^0_1)=320~ GeV$ in the SRs for the four-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
This paper describes a search for beyond the Standard Model decays of the Higgs boson into a pair of new spin-0 particles subsequently decaying into $b$-quark pairs, $H \rightarrow aa \rightarrow (b\bar{b})(b\bar{b})$, using proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider at center-of-mass energy $\sqrt{s}=13$ TeV. This search focuses on the regime where the decay products are collimated and in the range $15 \leq m_a \leq 30$ GeV and is complementary to a previous search in the same final state targeting the regime where the decay products are well separated and in the range $20 \leq m_a \leq 60$ GeV. A novel strategy for the identification of the $a \rightarrow b\bar{b}$ decays is deployed to enhance the efficiency for topologies with small separation angles. The search is performed with 36 fb$^{-1}$ of integrated luminosity collected in 2015 and 2016 and sets upper limits on the production cross-section of $H \rightarrow aa \rightarrow (b\bar{b})(b\bar{b})$, where the Higgs boson is produced in association with a $Z$ boson.
Summary of the 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$. Both observed and expected limits are listed. In the case of the expected limits, one- and two-standard-deviation uncertainty bands are also listed.
Summary of the 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$. Both observed and expected limits are listed. In the case of the expected limits, one- and two-standard-deviation uncertainty bands are also listed.
Summary of the 95% C.L. upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$ for the dilepton channel in the resolved analysis. The observed limits are shown, together with the expected limits (dotted black lines). In the case of the expected limits, one- and two-standard-deviation uncertainty bands are also displayed. The data was published in JHEP 10 (2018) 031.
Summary of the observed 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$ for the resolved analysis.
Efficiency and acceptance for simulated $ZH(\rightarrow aa\rightarrow (b\bar{b})(b\bar{b}))$ samples in two signal regions (SR) of the analysis, one with two $a\to b\bar{b}$ candidates in the High Purity Category (HPC), and the other with one $a\to b\bar{b}$ candidate in the High Purity Category (HPC) and one in the Low Purity Category (LPC).
Efficiency and acceptance for simulated $ZH(\rightarrow aa\rightarrow (b\bar{b})(b\bar{b}))$ samples in two signal regions (SR) of the analysis, one with two $a\to b\bar{b}$ candidates in the High Purity Category (HPC), and the other with one $a\to b\bar{b}$ candidate in the High Purity Category (HPC) and one in the Low Purity Category (LPC).
Event yields for a simulated $ZH(\rightarrow aa\rightarrow (b\bar{b})(b\bar{b}))$ sample with $m_a = 17.5\,\text{GeV}$. The signal sample is produced with cross section equals to the standard model $pp\to ZH$, i.e. $0.88\,\text{pb}$. Cut 0 corresponds to the initial number of events. Cut 1 requires the single lepton trigger. Cut 2 requires 2 identified leptons. Cut 3 requires the Z-boson mass window. Cut 4 requires 2 reconstructed $a\to b\bar{b}$ candidates. Cut 5a requires 2 identified $a\to b\bar{b}$ candidates in the 1HPC1LPC region. Cut 6a requires the 2 $a\to b\bar{b}$ candidates in the 1HPC1LPC region to be inside the Higgs mass window. Cut 5b requires 2 identified $a\to b\bar{b}$ candidates in the 2HPC region. Cut 6b requires the 2 $a\to b\bar{b}$ candidates in the 2HPC region to be inside the Higgs mass window.
Event yields for a simulated $ZH(\rightarrow aa\rightarrow (b\bar{b})(b\bar{b}))$ sample with $m_a = 17.5\,\text{GeV}$. The signal sample is produced with cross section equals to the standard model $pp\to ZH$, i.e. $0.88\,\text{pb}$. Cut 0 corresponds to the initial number of events. Cut 1 requires the single lepton trigger. Cut 2 requires 2 identified leptons. Cut 3 requires the Z-boson mass window. Cut 4 requires 2 reconstructed $a\to b\bar{b}$ candidates. Cut 5a requires 2 identified $a\to b\bar{b}$ candidates in the 1HPC1LPC region. Cut 6a requires the 2 $a\to b\bar{b}$ candidates in the 1HPC1LPC region to be inside the Higgs mass window. Cut 5b requires 2 identified $a\to b\bar{b}$ candidates in the 2HPC region. Cut 6b requires the 2 $a\to b\bar{b}$ candidates in the 2HPC region to be inside the Higgs mass window.
Background yield table for Z+jets, $t\bar{t}$, and rare sources. Observed data yield. Signal $ZH(\rightarrow aa\rightarrow (b\bar{b})(b\bar{b}))$ yield with $m_a = 20\,\text{GeV}$. The signal sample is produced with cross section equals to the standard model $pp\to ZH$, i.e. $0.88\,\text{pb}$. The table includes the yields in two signal regions with leptons consistent with an on-shell Z-boson decay, one with 2 $a\to b\bar{b}$ candidates in the 2HPC region and one with 2 $a\to b\bar{b}$ candidates in the 1HPC1LPC region. The table also includes the yields in four control regions, one with leptons consistent with an on-shell Z-boson decay and 2 $a\to b\bar{b}$ candidates in the Low Purity Category (LPC), and three others where the leptons are not consistent an on-shell Z-boson decay.
Background yield table for Z+jets, $t\bar{t}$, and rare sources. Observed data yield. Signal $ZH(\rightarrow aa\rightarrow (b\bar{b})(b\bar{b}))$ yield with $m_a = 20\,\text{GeV}$. The signal sample is produced with cross section equals to the standard model $pp\to ZH$, i.e. $0.88\,\text{pb}$, with a branching ratio set to 1 for the $H \rightarrow aa$ decay, whereas the ATLAS figure attached to this entry instead uses the upper-limit branching ratio (smaller than 1). The table includes the yields in two signal regions with leptons consistent with an on-shell Z-boson decay, one with 2 $a\to b\bar{b}$ candidates in the 2HPC region and one with 2 $a\to b\bar{b}$ candidates in the 1HPC1LPC region. The table also includes the yields in four control regions, one with leptons consistent with an on-shell Z-boson decay and 2 $a\to b\bar{b}$ candidates in the Low Purity Category (LPC), and three others where the leptons are not consistent an on-shell Z-boson decay.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status Email Forum Twitter GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.