In this letter, we present the first measurement of direct photons at the transverse momentum of $ 1 < p_{\rm T} < 6$ GeV/$c$ at midrapidity $|η| < 0.8$ in inelastic and high-multiplicity proton--proton collisions at a centre-of-mass energy of $\sqrt{s} =$ 13 TeV. The fraction of virtual direct photons in the inclusive virtual photon spectrum is obtained from a fit to the dielectron invariant mass spectrum. In the limit of zero invariant mass, this fraction is equal to the relative contribution of real direct photons in the inclusive real photon spectrum. Contributions from decays of light-flavour neutral mesons are estimated using independent measurements in proton-proton collisions at the same energy and the same event class. For the first time at the LHC energies, a direct-photon signal is observed at low $p_{\rm T}$ in both inelastic and high-multiplicity event classes, with a significance of 3.2$σ$ and 1.9$σ$ in terms of standard deviations, correspondingly. The yield of direct photons in inelastic pp collisions is compared to perturbative QCD calculations. The integrated photon yield is studied as a function of charged-particle multiplicity and is compared to the results from other experiments and theoretical calculations. The results show a significant increase of direct-photon yield with charged-particle multiplicity.
The dielectron cross section in inelastic pp collisions at $\sqrt{s}$ = 13 TeV as a function of invariant mass for 2 < $p_{\rm T,ee}$ < 3 GeV/$c$.
The dielectron cross section in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV as a function of invariant mass for 2 < $p_{\rm T,ee}$ < 3 GeV/$c$.
The direct-photon fraction r in inelastic pp collisions at $\sqrt{s}$ = 13 TeV as a function of transverse momentum for 1 < $p_{\rm T}$ < 6 GeV/$c$. r is the ratio of direct GAMMA to inclusive GAMMA.
A measurement of dielectron production in proton-proton (pp) collisions at $\sqrt{s} = 13$ TeV, recorded with the ALICE detector at the CERN LHC, is presented in this Letter. The data set was recorded with a reduced magnetic solenoid field. This enables the investigation of a kinematic domain at low dielectron invariant mass $m_{\rm ee}$ and pair transverse momentum $p_{\rm T,ee}$ that was previously inaccessible at the LHC. The cross section for dielectron production is studied as a function of $m_{\rm ee}$, $p_{\rm T,ee}$, and event multiplicity ${\rm d} N_{\rm ch}/{\rm d} \eta$. The expected dielectron rate from hadron decays, called hadronic cocktail, utilizes a parametrization of the measured $\eta/\pi^0$ ratio in pp and proton-nucleus (p-A) collisions, assuming that this ratio shows no strong dependence on collision energy at low transverse momentum. Comparison of the measured dielectron yield to the hadronic cocktail at $0.15
Differential dielectron cross section in pp collisions at $\sqrt{s}$ = 13 TeV as a function of $m_{\rm ee}$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.075$ GeV/$c$.
Differential dielectron cross section in pp collisions at $\sqrt{s}$ = 13 TeV in the invariant mass interval 0.15<$m_{\rm ee}$<0.6 as a function of $p_{\rm T,ee}$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.075$ GeV/$c$.
Dielectron yield per event in the excess region(0.15<$m_{\rm ee}$<0.6, $p_{\rm T,ee}$<0.4) as a function of the event multiplicity. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.075$ GeV/$c$.
The measurement of dielectron production is presented as a function of invariant mass and transverse momentum ($p_{\rm T}$) at midrapidity ($|y_{\rm e}|<0.8$) in proton-proton (pp) collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The contributions from light-hadron decays are calculated from their measured cross sections in pp collisions at $\sqrt{s}=7$ TeV or 13 TeV. The remaining continuum stems from correlated semileptonic decays of heavy-flavour hadrons. Fitting the data with templates from two different MC event generators, PYTHIA and POWHEG, the charm and beauty cross sections at midrapidity are extracted for the first time at this collision energy: ${\rm d}\sigma_{\rm c\bar{c}}/{\rm d}y|_{y=0}=974\pm138(\rm{stat.})\pm140(\rm{syst.})~\mu{\rm b}$ and ${\rm d}\sigma_{\rm b\bar{b}}/{\rm d}y|_{y=0}=79\pm14(\rm{stat.})\pm11(\rm{syst.})~\mu{\rm b}$ using PYTHIA simulations and ${\rm d}\sigma_{\rm c\bar{c}}/{\rm d}y|_{y=0}=1417\pm184(\rm{stat.})\pm204(\rm{syst.})~\mu{\rm b}$ and ${\rm d}\sigma_{\rm b\bar{b}}/{\rm d}y|_{y=0}=48\pm14(\rm{stat.})\pm7(\rm{syst.})~\mu{\rm b}$ for POWHEG. These values, whose uncertainties are fully correlated between the two generators, are consistent with extrapolations from lower energies. The different results obtained with POWHEG and PYTHIA imply different kinematic correlations of the heavy-quark pairs in these two generators. Furthermore, comparisons of dielectron spectra in inelastic events and in events collected with a trigger on high charged-particle multiplicities are presented in various $p_{\rm T}$ intervals. The differences are consistent with the already measured scaling of light-hadron and open-charm production at high charged-particle multiplicity as a function of $p_{\rm T}$. Upper limits for the contribution of virtual direct photons are extracted at 90% confidence level and found to be in agreement with pQCD calculations.
The dielectron cross section in inelastic pp collisions at $\sqrt{s}$ = 13 TeV as a function of invariant mass for $p_{\rm T,ee}$ < 6.0 GeV/$c$.
The dielectron cross section in inelastic pp collisions at $\sqrt{s}$ = 13 TeV as a function of pair transverse momentum for $m_{\rm ee}$ < 0.14 GeV/$c^{2}$.
The dielectron cross section in inelastic pp collisions at $\sqrt{s}$ = 13 TeV as a function of pair transverse momentum for 0.14 < $m_{\rm ee}$ < 0.7 GeV/$c^{2}$.