The interaction of virtual photons is investigated using the reaction e+e- -> e+e- hadrons based on data taken by the OPAL experiment at e+e- centre-of-mass energies sqrt(s_ee)=189-209 GeV, for W>5 GeV and at an average Q^2 of 17.9 GeV^2. The measured cross-sections are compared to predictions of the Quark Parton Model (QPM), to the Leading Order QCD Monte Carlo model PHOJET to the NLO prediction for the reaction e+e- -> e+e-qqbar, and to BFKL calculations. PHOJET, NLO e+e- -> e+e-qqbar, and QPM describe the data reasonably well, whereas the cross-section predicted by a Leading Order BFKL calculation is too large.
Total cross section in the given phase space and assuming ALPHA = 1/137.
Differential cross section as a function of X where X is the maximum value of X1 or X2, the upper and lower vertex values.
Differential cross section as a function of Q**2 where Q**2 is the maximum value of Q1**2 or Q2**2, the upper and lower vertex values.
We present a search for new heavy particles, $X$, which decay via $X \to WZ \to e\nu +jj$ in $p{\bar p}$ collisions at $\sqrt{s}$ = 1.8 TeV. No evidence is found for production of $X$ in 110 pb$^{-1}$ of data collected by the Collider Detector at Fermilab. Limits are set at the 95% C.L. on the mass and the production of new heavy charged vector bosons which decay via $W'\to WZ$ in extended gauge models as a function of the width, $\Gamma (W')$, and mixing factor between the $W'$ and the Standard Model $W$ bosons.
CONST(NAME=XI) is the mixing factor between WPRIME and W-boson.
We present results of searches for diphoton resonances produced both inclusively and also in association with a vector boson (W or Z) using 100 $pb^{-1}$ of $p\bar{p}$ collisions using the CDF detector. We set upper limits on the product of cross section times branching ratio for both $p\bar{p} \to \gamma \gamma + X$ and $p \bar{p} \to \gamma \gamma + W/Z$. Comparing the inclusive production to the expectations from heavy sgoldstinos we derive limits on the supersymmetry-breaking scale $\sqrt{F}$ in the TeV range, depending on the sgoldstino mass and the choice of other parameters. Also, using a NLO prediction for the associated production of a Higgs boson with a W or Z boson, we set an upper limit on the branching ratio for $H \to \gamma \gamma$. Finally, we set a lower limit on the mass of a 'bosophilic' Higgs boson (e.g. one which couples only to $\gamma, W,$ and $Z$ bosons with standard model couplings) of 82 GeV/$c^2$ at 95% confidence level.
No description provided.
No description provided.
We describe a search for the pair production of first-generation scalar and vector leptoquarks in the eejj and enujj channels by the D0 Collaboration. The data are from the 1992--1996 ppbar run at sqrt{s} = 1.8 TeV at the Fermilab Tevatron collider. We find no evidence for leptoquark production; in addition, no kinematically interesting events are observed using relaxed selection criteria. The results from the eejj and enujj channels are combined with those from a previous D0 analysis of the nunujj channel to obtain 95% confidence level (C.L.) upper limits on the leptoquark pair-production cross section as a function of mass and of beta, the branching fraction to a charged lepton. These limits are compared to next-to-leading-order theory to set 95% C.L. lower limits on the mass of a first-generation scalar leptoquark of 225, 204, and 79 GeV/c^2 for beta=1, 1/2, and 0, respectively. For vector leptoquarks with gauge (Yang-Mills) couplings, 95% C.L. lower limits of 345, 337, and 206 GeV/c^2 are set on the mass for beta=1, 1/2, and 0, respectively. Mass limits for vector leptoquarks are also set for anomalous vector couplings.
No description provided.
No description provided.
No description provided.
We present a measurement of the polarization of Antilambda hyperons produced in nu_mu charged current interactions. The full data sample from the NOMAD experiment has been analyzed using the same V0 identification procedure and analysis method reported in a previous paper for the case of Lambda hyperons. The Antilambda polarization has been measured for the first time in a neutrino experiment. The polarization vector is found to be compatible with zero.
Lambdabar polarization in regions of Feynman X (XL).
Lambdabar polarization in regions of the Bjorken scaling variable X.
We present the results of a search for neutral Higgs bosons produced in association with $b$ quarks in $p\bar{p}\to b\bar{b} \phi\to b\bar{b}b\bar{b}$ final states with $91 \pm 7$ pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s}=1.8$ TeV recorded by the Collider Detector at Fermilab. We find no evidence of such a signal and the data is interpreted in the context of the neutral Higgs sector of the Minimal Supersymmetric extension of the Standard Model. With basic parameter choices for the supersymmetric scale and the stop quark mixing, we derive 95% C.L. lower mass limits for neutral Higgs bosons for $\tb$ values in excess of 35.
Here HIGGS stands for H(1)0 or H(2)0 or A0 supersymmetric Higgs boson.
Bottom quark production in pbar-p collisions at sqrt(s)=1.8 TeV is studied with 5 inverse picobarns of data collected in 1995 by the DO detector at the Fermilab Tevatron Collider. The differential production cross section for b jets in the central rapidity region (|y(b)| < 1) as a function of jet transverse energy is extracted from a muon-tagged jet sample. Within experimental and theoretical uncertainties, DO results are found to be higher than, but compatible with, next-to-leading-order QCD predictions.
No description provided.
We have measured the pT distribution of top quarks that are pair produced in pp¯ collisions at s=1.8TeV using a sample of tt¯ decays in which we observe a single high- pT charged lepton, a neutrino, and four or more jets. We use a likelihood technique that corrects for the experimental bias introduced due to event reconstruction and detector resolution effects. The observed distribution is consistent with the standard model prediction. We use these data to place limits on the production of high- pT top quarks suggested in some models of anomalous top quark pair production.
No description provided.
We use 106 $\ipb$ of data collected with the Collider Detector at Fermilab to search for narrow-width, vector particles decaying to a top and an anti-top quark. Model independent upper limits on the cross section for narrow, vector resonances decaying to $\ttbar$ are presented. At the 95% confidence level, we exclude the existence of a leptophobic $\zpr$ boson in a model of topcolor-assisted technicolor with mass $M_{\zpr}$ $<$ 480 $\gev$ for natural width $\Gamma$ = 0.012 $M_{\zpr}$, and $M_{\zpr}$ $<$ 780 $\gev$ for $\Gamma$ = 0.04 $M_{\zpr}$.
UNSPEC here means any vector particle decaying to TQ TQBAR.
We have searched for second generation leptoquark (LQ) pairs in the \mu\mu+jets channel using 94+-5 pb^{-1} of pbar-p collider data collected by the D0 experiment at the Fermilab Tevatron during 1993-1996. No evidence for a signal is observed. These results are combined with those from the \mu\nu+jets and \nu\nu+jets channels to obtain 95% confidence level (C.L.) upper limits on the LQ pair production cross section as a function of mass and $beta, the branching fraction of a LQ decay into a charged lepton and a quark. Lower limits of 200(180) GeV/c^2 for \beta=1(1/2) are set at the 95% C.L. on the mass of scalar LQ. Mass limits are also set on vector leptoquarks as a function of \beta.
No description provided.