We report a high-statistics measurement of differential cross sections for the process gamma gamma -> pi^0 pi^0 in the kinematic range 0.6 GeV <= W <= 4.0 GeV and |cos theta*| <= 0.8, where W and theta* are the energy and pion scattering angle, respectively, in the gamma gamma center-of-mass system. Differential cross sections are fitted to obtain information on S, D_0, D_2, G_0 and G_2 waves. The G waves are important above W ~= 1.6 GeV. For W <= 1.6 GeV the D_2 wave is dominated by the f_2(1270) resonance while the S wave requires at least one additional resonance besides the f_0(980), which may be the f_0(1370) or f_0(1500). The differential cross sections are fitted with a simple parameterization to determine the parameters (the mass, total width and Gamma_{gamma gamma}B(f_0 -> pi^0 pi^0)) of this scalar meson as well as the f_0(980). The helicity 0 fraction of the f_2(1270) meson, taking into account interference for the first time, is also obtained.
Differential cross section for W = 0.61, 0.63 and 0.65 GeV.
Differential cross section for W = 0.67, 0.69 and 0.71 GeV.
Differential cross section for W = 0.73, 0.75 and 0.77 GeV.
Photoproduction of the cascade resonances has been investigated in the reactions $\gamma p \to K^+ K^+ (X)$ and $\gamma p \to K^+ K^+ \pi^- (X)$. The mass split of the $\Xi$ doublet is measured to be $5.4\pm 1.8$ MeV/c$^2$, consistent with existing measurements. The differential (total) cross sections for the $\Xi^{-}$ have been determined for photon beam energies from 2.75 to 3.85 (4.75) GeV, and are consistent with a possible production mechanism of $Y^*\to K^+\Xi^-$ through a $t$-channel process. The reaction $\gamma p \to K^+ K^+ \pi^-[\Xi^0]$ has also been investigated in search of excited cascade resonances. No significant signal of excited cascade states other than the $\Xi^-(1530)$ is observed. The cross section results of the $\Xi^-(1530)$ have also been obtained for photon beam energies from 3.35 to 4.75 GeV.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.79 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.89 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.99 Gev.
Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/ 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.
Cross section of proton Compton Scattering at centre of mass energy squared of 4.82 GeV.
Cross section of proton Compton Scattering at centre of mass energy squared of 6.79 GeV.
Cross section of proton Compton Scattering at centre of mass energy squared of 8.90 GeV.
$K^0_SK^0_S$ production in two-photon collisions has been studied using a 397.6 fb$^{-1}$ data sample collected with the Belle detector at the KEKB $e^+e^-$ collider. For the first time the cross sections are measured in the two-photon center-of-mass energy range between 2.4 GeV and 4.0 GeV and angular range $|\cos\theta^*|<0.6$. Combining the results with measurements of $\gamma\gamma\to K^+K^-$ from Belle, we observe that the cross section ratio $\sigma(K^0_SK^0_S)/\sigma(K^+K^-)$ decreases from ~0.13 to ~0.01 with increasing energy. Signals for the $\chi_{c0}$ and $\chi_{c2}$ charmonium states are also observed.
Total cross section for the process GAMMA GAMMA --> K0S K0S.
Angular distribution of the cross section in the W range 2.4 to 2.5 GeV.
Angular distribution of the cross section in the W range 2.5 to 2.6 GeV.
Differential cross sections for the exclusive reaction p⃗p→ppη observed via the η→π+π−π0 decay channel have been measured at Tbeam=2.15GeV, 2.50GeV, and 2.85GeV (excess energies 324MeV, 412MeV, and 554MeV). The influence of the N(1535)S11 resonance is clearly seen in the invariant mass and momentum dependent differential cross sections. The extracted resonance parameters are compatible with existing data. No significant evidence for further resonance contributions has been found. In addition, angular distributions of the ppη final state have been measured. The polar angle distribution of the η shows an anisotropy with respect to the beam axis for the lowest beam energy, which vanishes for the higher energies. The sign of this anisotropy is negative and expected to be sensitive to the dominant production mechanism. In contrast, the proton polar angle in the pp rest frame tends to be more strongly aligned along the beam axis with increasing beam energy. The analyzing power Ay is compatible with zero for all beam energies.
Differential cross section for incident kinetic energy 2.15 GeV, divided by the phase space as a function of the invariant mass of the ETA and the final state proton with the lower value of ABS(T). This is proportional to the square of the decay matrix element ABS(M)**2 of the P-ETA system.
Differential cross section for incident kinetic energy 2.50 GeV, divided by the phase space as a function of the invariant mass of the ETA and the final state proton with the lower value of ABS(T). This is proportional to the square of the decay matrix element ABS(M)**2 of the P-ETA system.
Differential cross section for incident kinetic energy 2.85 GeV, divided by the phase space as a function of the invariant mass of the ETA and the final state proton with the lower value of ABS(T). This is proportional to the square of the decay matrix element ABS(M)**2 of the P-ETA system.
Exclusive rho^+ rho^- production in two-photon collisions involving a single highly-virtual photon is studied with data collected at LEP at centre-of-mass energies 89 GeV < \sqrt{s} < 209 GeV with a total integrated luminosity of 854.7 pb^-1. The cross section of the process gamma gamma^* -> rho^+ rho^- is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 1.2 GeV^2 < Q^2 < 30 GeV^2 and 1.1 GeV < W_gg < 3 GeV. The \rho^+\rho^- production cross section is found to be of the same magnitude as the cross section of the process gamma gamma^* -> rho^0 rho^0, measured in the same kinematic region by L3, and to have similar W_gg and Q^2 dependences.
Cross sections for the reaction E+ E- --> E+ E- RHO+ RHO-. The differentialcross sections are corrected to the centre of each bin.
Cross sections for the two photon production of RHO+ RHO-.
Differential cross section for the process E+ E- --> E+ E- (RHO+ PI- PI0 + RHO+ RHO- PI0 PI0) corrected to bin centre.
The reaction e^+e^- -> e^+e^- proton antiproton is studied with the L3 detector at LEP. The analysis is based on data collected at e^+e^- center-of-mass energies from 183 GeV to 209 GeV, corresponding to an integrated luminosity of 667 pb^-1. The gamma gamma -> proton antiproton differential cross section is measured in the range of the two-photon center-of-mass energy from 2.1 GeV to 4.5 GeV. The results are compared to the predictions of the three-quark and quark-diquark models.
Total cross section for P PBAR production at a mean centre-of-mass energy of 197 GeV.
The cross section as a function of W for ABS(COS(THETA)) < 0.6.
The differential cross section as a function of COS(THETA*) for three W ranges.
We have measured the differential cross section for the gamma n --> pi- p and gamma p --> pi+ n reactions at center of mass angle of 90 degree in the photon energy range from 1.1 to 5.5 GeV at Jefferson Lab (JLab). The data at photon energies greater than 3.3 GeV exhibit a global scaling behavior for both pi- and pi+ photoproduction, consistent with the constituent counting rule and the existing pi+ photoproduction data. Possible oscillations around the scaling value are suggested by these new data The data show enhancement in the scaled cross section at a center-of-mass energy near 2.2 GeV. The cross section ratio of exclusive pi- to pi+ photoproduction at high energy is consistent with the prediction based on one-hard-gluon-exchange diagrams.
Differential cross section at THETA(CM) = 90 degrees.
The exclusive production of proton-antiproton pairs in the collisions of two quasi-real photons had been studied using data taken at sqrt(s)_ee=183 GeV and 189 GeV with the OPAL detector at LEP. Results are presented for Ppbar invariant masses, W, in the range 2.15 W< <3.95 GeV. The cross-section measurements are compared with previous data and with recent analytic calculations based on the quark-diquark model.
Cross section as a function of the invariant mass of the pbar-p pair.
Cross section for two photon production of the pbar-p pair.
Angular distributions in 3 W ranges.
We present results of searches for diphoton resonances produced both inclusively and also in association with a vector boson (W or Z) using 100 $pb^{-1}$ of $p\bar{p}$ collisions using the CDF detector. We set upper limits on the product of cross section times branching ratio for both $p\bar{p} \to \gamma \gamma + X$ and $p \bar{p} \to \gamma \gamma + W/Z$. Comparing the inclusive production to the expectations from heavy sgoldstinos we derive limits on the supersymmetry-breaking scale $\sqrt{F}$ in the TeV range, depending on the sgoldstino mass and the choice of other parameters. Also, using a NLO prediction for the associated production of a Higgs boson with a W or Z boson, we set an upper limit on the branching ratio for $H \to \gamma \gamma$. Finally, we set a lower limit on the mass of a 'bosophilic' Higgs boson (e.g. one which couples only to $\gamma, W,$ and $Z$ bosons with standard model couplings) of 82 GeV/$c^2$ at 95% confidence level.
No description provided.
No description provided.