Showing 10 of 255 results
This paper describes a search for beyond the Standard Model decays of the Higgs boson into a pair of new spin-0 particles subsequently decaying into $b$-quark pairs, $H \rightarrow aa \rightarrow (b\bar{b})(b\bar{b})$, using proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider at center-of-mass energy $\sqrt{s}=13$ TeV. This search focuses on the regime where the decay products are collimated and in the range $15 \leq m_a \leq 30$ GeV and is complementary to a previous search in the same final state targeting the regime where the decay products are well separated and in the range $20 \leq m_a \leq 60$ GeV. A novel strategy for the identification of the $a \rightarrow b\bar{b}$ decays is deployed to enhance the efficiency for topologies with small separation angles. The search is performed with 36 fb$^{-1}$ of integrated luminosity collected in 2015 and 2016 and sets upper limits on the production cross-section of $H \rightarrow aa \rightarrow (b\bar{b})(b\bar{b})$, where the Higgs boson is produced in association with a $Z$ boson.
Summary of the 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$. Both observed and expected limits are listed. In the case of the expected limits, one- and two-standard-deviation uncertainty bands are also listed.
Summary of the 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$. Both observed and expected limits are listed. In the case of the expected limits, one- and two-standard-deviation uncertainty bands are also listed.
Summary of the 95% C.L. upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$ for the dilepton channel in the resolved analysis. The observed limits are shown, together with the expected limits (dotted black lines). In the case of the expected limits, one- and two-standard-deviation uncertainty bands are also displayed. The data was published in JHEP 10 (2018) 031.
Summary of the observed 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$ for the resolved analysis.
Efficiency and acceptance for simulated $ZH(\rightarrow aa\rightarrow (b\bar{b})(b\bar{b}))$ samples in two signal regions (SR) of the analysis, one with two $a\to b\bar{b}$ candidates in the High Purity Category (HPC), and the other with one $a\to b\bar{b}$ candidate in the High Purity Category (HPC) and one in the Low Purity Category (LPC).
Efficiency and acceptance for simulated $ZH(\rightarrow aa\rightarrow (b\bar{b})(b\bar{b}))$ samples in two signal regions (SR) of the analysis, one with two $a\to b\bar{b}$ candidates in the High Purity Category (HPC), and the other with one $a\to b\bar{b}$ candidate in the High Purity Category (HPC) and one in the Low Purity Category (LPC).
Event yields for a simulated $ZH(\rightarrow aa\rightarrow (b\bar{b})(b\bar{b}))$ sample with $m_a = 17.5\,\text{GeV}$. The signal sample is produced with cross section equals to the standard model $pp\to ZH$, i.e. $0.88\,\text{pb}$. Cut 0 corresponds to the initial number of events. Cut 1 requires the single lepton trigger. Cut 2 requires 2 identified leptons. Cut 3 requires the Z-boson mass window. Cut 4 requires 2 reconstructed $a\to b\bar{b}$ candidates. Cut 5a requires 2 identified $a\to b\bar{b}$ candidates in the 1HPC1LPC region. Cut 6a requires the 2 $a\to b\bar{b}$ candidates in the 1HPC1LPC region to be inside the Higgs mass window. Cut 5b requires 2 identified $a\to b\bar{b}$ candidates in the 2HPC region. Cut 6b requires the 2 $a\to b\bar{b}$ candidates in the 2HPC region to be inside the Higgs mass window.
Event yields for a simulated $ZH(\rightarrow aa\rightarrow (b\bar{b})(b\bar{b}))$ sample with $m_a = 17.5\,\text{GeV}$. The signal sample is produced with cross section equals to the standard model $pp\to ZH$, i.e. $0.88\,\text{pb}$. Cut 0 corresponds to the initial number of events. Cut 1 requires the single lepton trigger. Cut 2 requires 2 identified leptons. Cut 3 requires the Z-boson mass window. Cut 4 requires 2 reconstructed $a\to b\bar{b}$ candidates. Cut 5a requires 2 identified $a\to b\bar{b}$ candidates in the 1HPC1LPC region. Cut 6a requires the 2 $a\to b\bar{b}$ candidates in the 1HPC1LPC region to be inside the Higgs mass window. Cut 5b requires 2 identified $a\to b\bar{b}$ candidates in the 2HPC region. Cut 6b requires the 2 $a\to b\bar{b}$ candidates in the 2HPC region to be inside the Higgs mass window.
Background yield table for Z+jets, $t\bar{t}$, and rare sources. Observed data yield. Signal $ZH(\rightarrow aa\rightarrow (b\bar{b})(b\bar{b}))$ yield with $m_a = 20\,\text{GeV}$. The signal sample is produced with cross section equals to the standard model $pp\to ZH$, i.e. $0.88\,\text{pb}$. The table includes the yields in two signal regions with leptons consistent with an on-shell Z-boson decay, one with 2 $a\to b\bar{b}$ candidates in the 2HPC region and one with 2 $a\to b\bar{b}$ candidates in the 1HPC1LPC region. The table also includes the yields in four control regions, one with leptons consistent with an on-shell Z-boson decay and 2 $a\to b\bar{b}$ candidates in the Low Purity Category (LPC), and three others where the leptons are not consistent an on-shell Z-boson decay.
Background yield table for Z+jets, $t\bar{t}$, and rare sources. Observed data yield. Signal $ZH(\rightarrow aa\rightarrow (b\bar{b})(b\bar{b}))$ yield with $m_a = 20\,\text{GeV}$. The signal sample is produced with cross section equals to the standard model $pp\to ZH$, i.e. $0.88\,\text{pb}$, with a branching ratio set to 1 for the $H \rightarrow aa$ decay, whereas the ATLAS figure attached to this entry instead uses the upper-limit branching ratio (smaller than 1). The table includes the yields in two signal regions with leptons consistent with an on-shell Z-boson decay, one with 2 $a\to b\bar{b}$ candidates in the 2HPC region and one with 2 $a\to b\bar{b}$ candidates in the 1HPC1LPC region. The table also includes the yields in four control regions, one with leptons consistent with an on-shell Z-boson decay and 2 $a\to b\bar{b}$ candidates in the Low Purity Category (LPC), and three others where the leptons are not consistent an on-shell Z-boson decay.
A search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented. The analysis is based on 139 fb$^{-1}$ of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at $\sqrt{s}=13$ TeV. Three $R$-parity-conserving scenarios where the lightest neutralino is the lightest supersymmetric particle are considered: the production of chargino pairs with decays via either $W$ bosons or sleptons, and the direct production of slepton pairs. The analysis is optimised for the first of these scenarios, but the results are also interpreted in the others. No significant deviations from the Standard Model expectations are observed and limits at 95 % confidence level are set on the masses of relevant supersymmetric particles in each of the scenarios. For a massless lightest neutralino, masses up to 420 GeV are excluded for the production of the lightest-chargino pairs assuming $W$-boson-mediated decays and up to 1 TeV for slepton-mediated decays, whereas for slepton-pair production masses up to 700 GeV are excluded assuming three generations of mass-degenerate sleptons.
Observed exclusion limits on SUSY simplified models for chargino-pair production with $W$ boson mediated decays. All limits are computed at 95% CL.
Observed exclusion limits on SUSY simplified models for chargino-pair production with $W$ boson mediated decays. All limits are computed at 95% CL.
Observed exclusion limits on SUSY simplified models for chargino-pair production with $W$ boson mediated decays. All limits are computed at 95% CL.
Observed exclusion limits on SUSY simplified models for chargino-pair production with $W$ boson mediated decays. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for chargino-pair production with $W$ boson mediated decays. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for chargino-pair production with $W$ boson mediated decays. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for chargino-pair production with $W$ boson mediated decays. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for chargino-pair production with $W$ boson mediated decays. All limits are computed at 95% CL.
Observed exclusion limits on SUSY simplified models for slepton-pair production. All limits are computed at 95% CL.
Observed exclusion limits on SUSY simplified models for slepton-pair production. All limits are computed at 95% CL.
Observed exclusion limits on SUSY simplified models for slepton-pair production. All limits are computed at 95% CL.
Observed exclusion limits on SUSY simplified models for slepton-pair production. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for slepton-pair production. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for slepton-pair production. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for slepton-pair production. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for slepton-pair production. All limits are computed at 95% CL.
Observed exclusion limits on SUSY simplified models for left-handed slepton-pair production. All limits are computed at 95% CL.
Observed exclusion limits on SUSY simplified models for left-handed slepton-pair production. All limits are computed at 95% CL.
Observed exclusion limits on SUSY simplified models for left-handed slepton-pair production. All limits are computed at 95% CL.
Observed exclusion limits on SUSY simplified models for left-handed slepton-pair production. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for left-handed slepton-pair production. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for left-handed slepton-pair production. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for left-handed slepton-pair production. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for left-handed slepton-pair production. All limits are computed at 95% CL.
Observed exclusion limits on SUSY simplified models for right-handed slepton-pair production. All limits are computed at 95% CL.
Observed exclusion limits on SUSY simplified models for right-handed slepton-pair production. All limits are computed at 95% CL.
Observed exclusion limits on SUSY simplified models for right-handed slepton-pair production. All limits are computed at 95% CL.
Observed exclusion limits on SUSY simplified models for right-handed slepton-pair production. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for right-handed slepton-pair production. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for right-handed slepton-pair production. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for right-handed slepton-pair production. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for right-handed slepton-pair production. All limits are computed at 95% CL.
Upper limits on signal cross-section (fb) for chargino-pair production with W -boson-mediated decays.
Upper limits on signal cross-section (fb) for chargino-pair production with W -boson-mediated decays.
Upper limits on signal cross-section (fb) for chargino-pair production with W -boson-mediated decays.
Upper limits on signal cross-section (fb) for chargino-pair production with W -boson-mediated decays.
Upper limits on signal cross-section (fb) for slepton-pair production.
Upper limits on signal cross-section (fb) for slepton-pair production.
Upper limits on signal cross-section (fb) for slepton-pair production.
Upper limits on signal cross-section (fb) for slepton-pair production.
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[160,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[160,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[160,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[160,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[160,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[160,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[160,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[160,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[160,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[160,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[160,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[160,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[160,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[160,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[160,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[160,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[160,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[160,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[160,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[160,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[160,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[160,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[160,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[160,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[160,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[160,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[160,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[160,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[160,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[160,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[160,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[160,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[120,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[120,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[120,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[120,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[120,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[120,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[120,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[120,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[120,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[120,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[120,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[120,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[120,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[120,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[120,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[120,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[120,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[120,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[120,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[120,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[120,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[120,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[120,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[120,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[120,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[120,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[120,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[120,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[120,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[120,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[120,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[120,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,105).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,105).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,105).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,105).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,105).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,105).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,105).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[100,105).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,105).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,105).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,105).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,105).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,105).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,105).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,105).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[100,105).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,105).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,105).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,105).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,105).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,105).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,105).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,105).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[100,105).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,105).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,105).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,105).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,105).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,105).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,105).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,105).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[100,105).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[105,110).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[105,110).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[105,110).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[105,110).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[105,110).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[105,110).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[105,110).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[105,110).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[105,110).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[105,110).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[105,110).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[105,110).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[105,110).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[105,110).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[105,110).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[105,110).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[105,110).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[105,110).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[105,110).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[105,110).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[105,110).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[105,110).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[105,110).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[105,110).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[105,110).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[105,110).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[105,110).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[105,110).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[105,110).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[105,110).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[105,110).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[105,110).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[110,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[110,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[110,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[110,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[110,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[110,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[110,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[110,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[110,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[110,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[110,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[110,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[110,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[110,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[110,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[110,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[110,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[110,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[110,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[110,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[110,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[110,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[110,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[110,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[110,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[110,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[110,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[110,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[110,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[110,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[110,120).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[110,120).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[120,140).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[120,140).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[120,140).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[120,140).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[120,140).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[120,140).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[120,140).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[120,140).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[120,140).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[120,140).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[120,140).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[120,140).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[120,140).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[120,140).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[120,140).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[120,140).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[120,140).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[120,140).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[120,140).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[120,140).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[120,140).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[120,140).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[120,140).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[120,140).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[120,140).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[120,140).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[120,140).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[120,140).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[120,140).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[120,140).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[120,140).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[120,140).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[140,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[140,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[140,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[140,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[140,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[140,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[140,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[140,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[140,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[140,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[140,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[140,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[140,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[140,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[140,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[140,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[140,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[140,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[140,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[140,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[140,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[140,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[140,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[140,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[140,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[140,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[140,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[140,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[140,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[140,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[140,160).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[140,160).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[160,180).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[160,180).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[160,180).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[160,180).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[160,180).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[160,180).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[160,180).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[160,180).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[160,180).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[160,180).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[160,180).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[160,180).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[160,180).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[160,180).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[160,180).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[160,180).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[160,180).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[160,180).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[160,180).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[160,180).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[160,180).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[160,180).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[160,180).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[160,180).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[160,180).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[160,180).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[160,180).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[160,180).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[160,180).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[160,180).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[160,180).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[160,180).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[180,220).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[180,220).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[180,220).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[180,220).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[180,220).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[180,220).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[180,220).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[180,220).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[180,220).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[180,220).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[180,220).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[180,220).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[180,220).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[180,220).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[180,220).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[180,220).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[180,220).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[180,220).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[180,220).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[180,220).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[180,220).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[180,220).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[180,220).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[180,220).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[180,220).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[180,220).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[180,220).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[180,220).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[180,220).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[180,220).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[180,220).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[180,220).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[220,260).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[220,260).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[220,260).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[220,260).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[220,260).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[220,260).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[220,260).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[220,260).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[220,260).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[220,260).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[220,260).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[220,260).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[220,260).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[220,260).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[220,260).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[220,260).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[220,260).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[220,260).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[220,260).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[220,260).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[220,260).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[220,260).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[220,260).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[220,260).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[220,260).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[220,260).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[220,260).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[220,260).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[220,260).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[220,260).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[220,260).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[220,260).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[260,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[260,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[260,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[260,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[260,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[260,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[260,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-0J-[260,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[260,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[260,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[260,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[260,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[260,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[260,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[260,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-SF-1J-[260,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[260,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[260,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[260,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[260,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[260,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[260,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[260,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-0J-[260,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[260,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[260,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[260,inf).
Signal Acceptance for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[260,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[260,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[260,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[260,inf).
Signal Efficiency for direct chargino-pair production with W-boson mediated decays in SR-DF-1J-[260,inf).
Cutflow for supersymmetric model where $\tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\mp}$ decay via $W^{\pm}W^{\mp}$. The masses of the two charginos are 300 GeV, while the mass of $\tilde{\chi}_1^{0}$ is 50 GeV. The numbers are normalised to the luminosity of 139~fb$^{-1}$.
Cutflow for supersymmetric model where $\tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\mp}$ decay via $W^{\pm}W^{\mp}$. The masses of the two charginos are 300 GeV, while the mass of $\tilde{\chi}_1^{0}$ is 50 GeV. The numbers are normalised to the luminosity of 139~fb$^{-1}$.
Cutflow for supersymmetric model where $\tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\mp}$ decay via $W^{\pm}W^{\mp}$. The masses of the two charginos are 300 GeV, while the mass of $\tilde{\chi}_1^{0}$ is 50 GeV. The numbers are normalised to the luminosity of 139~fb$^{-1}$.
Cutflow for supersymmetric model where $\tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\mp}$ decay via $W^{\pm}W^{\mp}$. The masses of the two charginos are 300 GeV, while the mass of $\tilde{\chi}_1^{0}$ is 50 GeV. The numbers are normalised to the luminosity of 139~fb$^{-1}$.
Cutflow for supersymmetric model where $\tilde\ell\tilde\ell$ are produced. Only $\tilde{e}$ and $\tilde{\mu}$ are considered in this model. The masses of the two sleptons are 400 GeV, while the mass of $\tilde{\chi}_1^{0}$ is 200 GeV. The numbers are normalised to the luminosity of 139~fb$^{-1}$.
Cutflow for supersymmetric model where $\tilde\ell\tilde\ell$ are produced. Only $\tilde{e}$ and $\tilde{\mu}$ are considered in this model. The masses of the two sleptons are 400 GeV, while the mass of $\tilde{\chi}_1^{0}$ is 200 GeV. The numbers are normalised to the luminosity of 139~fb$^{-1}$.
Cutflow for supersymmetric model where $\tilde\ell\tilde\ell$ are produced. Only $\tilde{e}$ and $\tilde{\mu}$ are considered in this model. The masses of the two sleptons are 400 GeV, while the mass of $\tilde{\chi}_1^{0}$ is 200 GeV. The numbers are normalised to the luminosity of 139~fb$^{-1}$.
Cutflow for supersymmetric model where $\tilde\ell\tilde\ell$ are produced. Only $\tilde{e}$ and $\tilde{\mu}$ are considered in this model. The masses of the two sleptons are 400 GeV, while the mass of $\tilde{\chi}_1^{0}$ is 200 GeV. The numbers are normalised to the luminosity of 139~fb$^{-1}$.
The results of a search for electroweakino pair production $pp \rightarrow \tilde\chi^\pm_1 \tilde\chi^0_2$ in which the chargino ($\tilde\chi^\pm_1$) decays into a $W$ boson and the lightest neutralino ($\tilde\chi^0_1$), while the heavier neutralino ($\tilde\chi^0_2$) decays into the Standard Model 125 GeV Higgs boson and a second $\tilde\chi^0_1$ are presented. The signal selection requires a pair of $b$-tagged jets consistent with those from a Higgs boson decay, and either an electron or a muon from the $W$ boson decay, together with missing transverse momentum from the corresponding neutrino and the stable neutralinos. The analysis is based on data corresponding to 139 $\mathrm{fb}^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. No statistically significant evidence of an excess of events above the Standard Model expectation is found. Limits are set on the direct production of the electroweakinos in simplified models, assuming pure wino cross-sections. Masses of $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ up to 740 GeV are excluded at 95% confidence level for a massless $\tilde{\chi}^{0}_{1}$.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-onLM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-onLM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-onLM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-onLM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-onMM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-onMM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-onMM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-onMM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-onHM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-onHM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-onHM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-onHM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-offLM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-offLM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-offLM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-offLM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-offMM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-offMM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-offMM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-offMM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-offHM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-offHM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-offHM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution is shown in the validation region VR-offHM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.
The post-fit $m_{CT}$ distribution for SR-HM. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The overflow events, where present, are included in the last bin.
The post-fit $m_{CT}$ distribution for SR-HM. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The overflow events, where present, are included in the last bin.
The post-fit $m_{CT}$ distribution for SR-HM. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The overflow events, where present, are included in the last bin.
The post-fit $m_{CT}$ distribution for SR-HM. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The overflow events, where present, are included in the last bin.
The post-fit $m_{CT}$ distribution for SR-MM. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The overflow events, where present, are included in the last bin.
The post-fit $m_{CT}$ distribution for SR-MM. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The overflow events, where present, are included in the last bin.
The post-fit $m_{CT}$ distribution for SR-MM. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The overflow events, where present, are included in the last bin.
The post-fit $m_{CT}$ distribution for SR-MM. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The overflow events, where present, are included in the last bin.
The post-fit $m_{CT}$ distribution for SR-LM. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The overflow events, where present, are included in the last bin.
The post-fit $m_{CT}$ distribution for SR-LM. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The overflow events, where present, are included in the last bin.
The post-fit $m_{CT}$ distribution for SR-LM. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The overflow events, where present, are included in the last bin.
The post-fit $m_{CT}$ distribution for SR-LM. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The overflow events, where present, are included in the last bin.
The post-fit $m_{bb}$ distribution is shown in the signal region SR-HM after all the selection requirements are applied other than the $m_{bb}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The red line with arrow indicates the $m_{bb}$ cut used in SR selection.The overflow events, where present, are included in the last bin.
The post-fit $m_{bb}$ distribution is shown in the signal region SR-HM after all the selection requirements are applied other than the $m_{bb}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The red line with arrow indicates the $m_{bb}$ cut used in SR selection.The overflow events, where present, are included in the last bin.
The post-fit $m_{bb}$ distribution is shown in the signal region SR-HM after all the selection requirements are applied other than the $m_{bb}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The red line with arrow indicates the $m_{bb}$ cut used in SR selection.The overflow events, where present, are included in the last bin.
The post-fit $m_{bb}$ distribution is shown in the signal region SR-HM after all the selection requirements are applied other than the $m_{bb}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The red line with arrow indicates the $m_{bb}$ cut used in SR selection.The overflow events, where present, are included in the last bin.
The post-fit $m_{bb}$ distribution is shown in the signal region SR-MM after all the selection requirements are applied other than the $m_{bb}$ cut. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The red line with arrow indicates the $m_{bb}$ cut used in SR selection. The overflow events, where present, are included in the last bin.
The post-fit $m_{bb}$ distribution is shown in the signal region SR-MM after all the selection requirements are applied other than the $m_{bb}$ cut. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The red line with arrow indicates the $m_{bb}$ cut used in SR selection. The overflow events, where present, are included in the last bin.
The post-fit $m_{bb}$ distribution is shown in the signal region SR-MM after all the selection requirements are applied other than the $m_{bb}$ cut. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The red line with arrow indicates the $m_{bb}$ cut used in SR selection. The overflow events, where present, are included in the last bin.
The post-fit $m_{bb}$ distribution is shown in the signal region SR-MM after all the selection requirements are applied other than the $m_{bb}$ cut. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The red line with arrow indicates the $m_{bb}$ cut used in SR selection. The overflow events, where present, are included in the last bin.
The post-fit $m_{bb}$ distribution is shown in the signal region SR-LM after all the selection requirements are applied other than the $m_{bb}$ cut. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The red line with arrow indicates the $m_{bb}$ cut used in SR selection. The overflow events, where present, are included in the last bin.
The post-fit $m_{bb}$ distribution is shown in the signal region SR-LM after all the selection requirements are applied other than the $m_{bb}$ cut. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The red line with arrow indicates the $m_{bb}$ cut used in SR selection. The overflow events, where present, are included in the last bin.
The post-fit $m_{bb}$ distribution is shown in the signal region SR-LM after all the selection requirements are applied other than the $m_{bb}$ cut. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The red line with arrow indicates the $m_{bb}$ cut used in SR selection. The overflow events, where present, are included in the last bin.
The post-fit $m_{bb}$ distribution is shown in the signal region SR-LM after all the selection requirements are applied other than the $m_{bb}$ cut. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. For illustration, the distribution of the SUSY reference points are also shown as dashed lines. The red line with arrow indicates the $m_{bb}$ cut used in SR selection. The overflow events, where present, are included in the last bin.
The observed exclusion for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. Experimental and theoretical systematic uncertainties are applied to background and signal samples and illustrated by the yellow band and the red dotted contour lines, respectively. The red dotted lines indicate the $\pm$ 1 standard-deviation variation on the observed exclusion limit due to theoretical uncertainties in the signal cross-section.
The observed exclusion for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. Experimental and theoretical systematic uncertainties are applied to background and signal samples and illustrated by the yellow band and the red dotted contour lines, respectively. The red dotted lines indicate the $\pm$ 1 standard-deviation variation on the observed exclusion limit due to theoretical uncertainties in the signal cross-section.
The observed exclusion for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. Experimental and theoretical systematic uncertainties are applied to background and signal samples and illustrated by the yellow band and the red dotted contour lines, respectively. The red dotted lines indicate the $\pm$ 1 standard-deviation variation on the observed exclusion limit due to theoretical uncertainties in the signal cross-section.
The observed exclusion for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. Experimental and theoretical systematic uncertainties are applied to background and signal samples and illustrated by the yellow band and the red dotted contour lines, respectively. The red dotted lines indicate the $\pm$ 1 standard-deviation variation on the observed exclusion limit due to theoretical uncertainties in the signal cross-section.
The observed exclusion up limit for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. The red dotted lines indicate the $\pm 1 \sigma$ on the observed exclusion limit due to the theoretical uncertainties in the signal cross-section.
The observed exclusion up limit for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. The red dotted lines indicate the $\pm 1 \sigma$ on the observed exclusion limit due to the theoretical uncertainties in the signal cross-section.
The observed exclusion up limit for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. The red dotted lines indicate the $\pm 1 \sigma$ on the observed exclusion limit due to the theoretical uncertainties in the signal cross-section.
The observed exclusion up limit for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. The red dotted lines indicate the $\pm 1 \sigma$ on the observed exclusion limit due to the theoretical uncertainties in the signal cross-section.
The observed exclusion down limit for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. The red dotted lines indicate the $\pm 1 \sigma$ on the observed exclusion limit due to the theoretical uncertainties in the signal cross-section.
The observed exclusion down limit for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. The red dotted lines indicate the $\pm 1 \sigma$ on the observed exclusion limit due to the theoretical uncertainties in the signal cross-section.
The observed exclusion down limit for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. The red dotted lines indicate the $\pm 1 \sigma$ on the observed exclusion limit due to the theoretical uncertainties in the signal cross-section.
The observed exclusion down limit for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. The red dotted lines indicate the $\pm 1 \sigma$ on the observed exclusion limit due to the theoretical uncertainties in the signal cross-section.
The expected exclusion for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. Experimental and theoretical systematic uncertainties are applied to background and signal samples and illustrated by the yellow band and the red dotted contour lines, respectively. The red dotted lines indicate the $\pm$ 1 standard-deviation variation on the observed exclusion limit due to theoretical uncertainties in the signal cross-section.
The expected exclusion for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. Experimental and theoretical systematic uncertainties are applied to background and signal samples and illustrated by the yellow band and the red dotted contour lines, respectively. The red dotted lines indicate the $\pm$ 1 standard-deviation variation on the observed exclusion limit due to theoretical uncertainties in the signal cross-section.
The expected exclusion for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. Experimental and theoretical systematic uncertainties are applied to background and signal samples and illustrated by the yellow band and the red dotted contour lines, respectively. The red dotted lines indicate the $\pm$ 1 standard-deviation variation on the observed exclusion limit due to theoretical uncertainties in the signal cross-section.
The expected exclusion for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. Experimental and theoretical systematic uncertainties are applied to background and signal samples and illustrated by the yellow band and the red dotted contour lines, respectively. The red dotted lines indicate the $\pm$ 1 standard-deviation variation on the observed exclusion limit due to theoretical uncertainties in the signal cross-section.
Upper limits on the cross sections for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Upper limits on the cross sections for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Upper limits on the cross sections for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Upper limits on the cross sections for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-LM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-LM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-LM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-LM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-LM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-LM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-LM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-LM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-LM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-LM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-LM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-LM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-LM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-LM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-LM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-LM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-MM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-MM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-MM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-MM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-MM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-MM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-MM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-MM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-MM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-MM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-MM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-MM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-MM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-MM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-MM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-MM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-HM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. 1lb\bar{b}$ production
Signal acceptance in SR-HM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. 1lb\bar{b}$ production
Signal acceptance in SR-HM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. 1lb\bar{b}$ production
Signal acceptance in SR-HM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production. 1lb\bar{b}$ production
Signal acceptance in SR-HM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-HM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-HM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-HM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-HM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-HM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-HM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-HM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-HM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-HM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-HM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal acceptance in SR-HM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-LM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-LM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-LM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-LM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-LM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-LM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-LM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-LM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-LM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-LM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-LM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-LM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-LM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-LM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-LM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-LM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-MM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-MM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-MM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-MM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-MM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-MM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-MM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-MM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-MM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-MM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-MM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-MM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-MM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-MM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-MM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-MM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-HM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-HM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-HM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-HM for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-HM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-HM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-HM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-HM low $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-HM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-HM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-HM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-HM med. $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-HM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-HM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-HM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Signal efficiency in SR-HM high $m_{CT}$ for simplified models with $\tilde\chi^\pm_1 \tilde\chi^0_2 \rightarrow Wh\tilde\chi^0_1\tilde\chi^0_1, W \rightarrow l\nu, h \rightarrow b\bar{b}$ production.
Event selection cutflow for a representative signal sample for the SR-LM low $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-LM low $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-LM low $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-LM low $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-LM med. $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-LM med. $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-LM med. $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-LM med. $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-LM high $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-LM high $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-LM high $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-LM high $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-MM low $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-MM low $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-MM low $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-MM low $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-MM med. $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-MM med. $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-MM med. $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-MM med. $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-MM high $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-MM high $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-MM high $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-MM high $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-HM low $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-HM low $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-HM low $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-HM low $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-HM med. $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-HM med. $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-HM med. $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-HM med. $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-HM high $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-HM high $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-HM high $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the SR-HM high $m_{CT}$. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the discovery SR-LM. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the discovery SR-LM. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the discovery SR-LM. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the discovery SR-LM. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the discovery SR-MM. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the discovery SR-MM. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the discovery SR-MM. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the discovery SR-MM. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the discovery SR-HM. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the discovery SR-HM. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the discovery SR-HM. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
Event selection cutflow for a representative signal sample for the discovery SR-HM. The masses of next-lightest-neutralinos and LSPs are reported. While the first row of the table reports the total raw MC events produced, all subsequent rows show weighted events. Only statistical uncertainties are shown. Samples are produced with generator filters which selects $h\rightarrow b\bar{b}$ and $W\rightarrow\ell\nu$ decays.
A search for supersymmetric partners of gluons and quarks is presented, involving signatures with jets and either two isolated leptons (electrons or muons) with the same electric charge, or at least three isolated leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to a total integrated luminosity of 139 fb$^{-1}$, is used for the search. No significant excess over the Standard Model expectation is observed. The results are interpreted in simplified supersymmetric models featuring both R-parity conservation and R-parity violation, raising the exclusion limits beyond those of previous ATLAS searches to 1600 GeV for gluino masses and 750 GeV for bottom and top squark masses in these scenarios.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0b, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 1200 GeV, $m(\tilde \chi_2^0)$ = 1000 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0b, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 1200 GeV, $m(\tilde \chi_2^0)$ = 1000 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0b, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 1200 GeV, $m(\tilde \chi_2^0)$ = 1000 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0b, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 1200 GeV, $m(\tilde \chi_2^0)$ = 1000 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Signal acceptance for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL upper limit on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Observed 95% CL upper limit on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Observed 95% CL upper limit on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Observed 95% CL upper limit on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L0b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L0b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L0b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L0b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $m_{\mathrm{eff}}$ of observed data and expected background towards Rpv2L from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $m_{\mathrm{eff}}$ of observed data and expected background towards Rpv2L from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $m_{\mathrm{eff}}$ of observed data and expected background towards Rpv2L from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $m_{\mathrm{eff}}$ of observed data and expected background towards Rpv2L from publication's Figure 5 . The last bin is inclusive.
In this paper, a new technique for reconstructing and identifying hadronically decaying $\tau^+\tau^-$ pairs with a large Lorentz boost, referred to as the di-$\tau$ tagger, is developed and used for the first time in the ATLAS experiment at the Large Hadron Collider. A benchmark di-$\tau$ tagging selection is employed in the search for resonant Higgs boson pair production, where one Higgs boson decays into a boosted $b\bar{b}$ pair and the other into a boosted $\tau^+\tau^-$ pair, with two hadronically decaying $\tau$-leptons in the final state. Using 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of 13 TeV, the efficiency of the di-$\tau$ tagger is determined and the background with quark- or gluon-initiated jets misidentified as di-$\tau$ objects is estimated. The search for a heavy, narrow, scalar resonance produced via gluon$-$gluon fusion and decaying into two Higgs bosons is carried out in the mass range 1$-$3 TeV using the same dataset. No deviations from the Standard Model predictions are observed, and 95% confidence-level exclusion limits are set on this model.
Signal acceptance times selection efficiency as a function of the resonance mass, at various stages of the event selection. From top to bottom: an event pre-selection (trigger, object definitions and $E_{T}^{miss}>10$ GeV) is performed first; the requirements on the di-$\tau$ object and large-$R$ jet detailed in the text are then applied; finally, the $HH$ SR definition must be satisfied.
Signal acceptance times selection efficiency as a function of the resonance mass, at various stages of the event selection. From top to bottom: an event pre-selection (trigger, object definitions and $E_{T}^{miss}>10$ GeV) is performed first; the requirements on the di-$\tau$ object and large-$R$ jet detailed in the text are then applied; finally, the $HH$ SR definition must be satisfied.
Distribution of $m^{vis}_{HH}$ after applying all the event selection that define the $HH$ SR, except the requirement on $m^{vis}_{HH}$. The background labelled as "Others" contains $W$+jets, diboson, $t\bar{t}$ and single-top-quark processes. The $X\rightarrow HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$ signal is overlaid for two resonance mass hypotheses with a cross-section set to the expected limit, while all backgrounds are pre-fit. The first and the last bins contains the under-flow and over-flow bin entries, respectively. The hatched bands represent combined statistical and systematic uncertainties.
Distribution of $m^{vis}_{HH}$ after applying all the event selection that define the $HH$ SR, except the requirement on $m^{vis}_{HH}$. The background labelled as "Others" contains $W$+jets, diboson, $t\bar{t}$ and single-top-quark processes. The $X\rightarrow HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$ signal is overlaid for two resonance mass hypotheses with a cross-section set to the expected limit, while all backgrounds are pre-fit. The first and the last bins contains the under-flow and over-flow bin entries, respectively. The hatched bands represent combined statistical and systematic uncertainties.
Event yields of the various estimated backgrounds and data, computed in the signal region of the search for $X\rightarrow HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$. The background labelled as "Others" contains $W$+jets, diboson, $t\bar{t}$ and single-top-quark processes. Statistical and systematic uncertainties are quoted. The background yields and uncertainties are pre-fit and are found to be similar to those post-fit.
Event yields of the various estimated backgrounds and data, computed in the signal region of the search for $X\rightarrow HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$. The background labelled as "Others" contains $W$+jets, diboson, $t\bar{t}$ and single-top-quark processes. Statistical and systematic uncertainties are quoted. The background yields and uncertainties are pre-fit and are found to be similar to those post-fit.
Expected and observed 95% CL upper limits on the production of a heavy, narrow-width, scalar resonance decaying to a pair of Higgs bosons ($X\rightarrow HH$). The final state used in the search consists of a boosted $b\bar{b}$ pair and a boosted hadronically decaying $\tau^{+}\tau^{-}$ pair, and the SM braching ratio of the Higgs boson are assumed. The $\pm 1\sigma$ and $\pm 2\sigma$ variations about the expected limit are indicated by the error bands. Two different requirements are applied on the visible mass of the two boosted Higgs boson candidates for the resonance mass hypotheses of 1.6 TeV and 2.5 TeV, leading to discontinuities in the limits (at 1.6 TeV, the difference between imposing no requirement and $m^{vis}_{HH}>900$ GeV is less than 1% though).
Expected and observed 95% CL upper limits on the production of a heavy, narrow-width, scalar resonance decaying to a pair of Higgs bosons ($X\rightarrow HH$). The final state used in the search consists of a boosted $b\bar{b}$ pair and a boosted hadronically decaying $\tau^{+}\tau^{-}$ pair, and the SM braching ratio of the Higgs boson are assumed. The $\pm 1\sigma$ and $\pm 2\sigma$ variations about the expected limit are indicated by the error bands. Two different requirements are applied on the visible mass of the two boosted Higgs boson candidates for the resonance mass hypotheses of 1.6 TeV and 2.5 TeV, leading to discontinuities in the limits (at 1.6 TeV, the difference between imposing no requirement and $m^{vis}_{HH}>900$ GeV is less than 1% though).
A search for direct pair production of scalar partners of the top quark (top squarks or scalar third-generation up-type leptoquarks) in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state is presented. The analysis of 139 fb$^{-1}$ of ${\sqrt{s}=13}$ TeV proton-proton collision data collected using the ATLAS detector at the LHC yields no significant excess over the Standard Model background expectation. To interpret the results, a supersymmetric model is used where the top squark decays via $\tilde{t} \to t^{(*)} \tilde{\chi}^0_1$, with $t^{(*)}$ denoting an on-shell (off-shell) top quark and $\tilde{\chi}^0_1$ the lightest neutralino. Three specific event selections are optimised for the following scenarios. In the scenario where $m_{\tilde{t}}> m_t+m_{\tilde{\chi}^0_1}$, top squark masses are excluded in the range 400-1250 GeV for $\tilde{\chi}^0_1$ masses below $200$ GeV at 95 % confidence level. In the situation where $m_{\tilde{t}}\sim m_t+m_{\tilde{\chi}^0_1}$, top squark masses in the range 300-630 GeV are excluded, while in the case where $m_{\tilde{t}}< m_W+m_b+m_{\tilde{\chi}^0_1}$ (with $m_{\tilde{t}}-m_{\tilde{\chi}^0_1}\ge 5$ GeV), considered for the first time in an ATLAS all-hadronic search, top squark masses in the range 300-660 GeV are excluded. Limits are also set for scalar third-generation up-type leptoquarks, excluding leptoquarks with masses below $1240$ GeV when considering only leptoquark decays into a top quark and a neutrino.
The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded.
The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded.
The expected exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contour are excluded.
The expected exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contour are excluded.
The minus $1\sigma$ variation of observed exclusion contour obtained by varying the signal cross section within its uncertainty. The contour is given as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$.
The minus $1\sigma$ variation of observed exclusion contour obtained by varying the signal cross section within its uncertainty. The contour is given as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$.
The plus $1\sigma$ variation of observed exclusion contour obtained by varying the signal cross section within its uncertainty. The contour is given as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$.
The plus $1\sigma$ variation of observed exclusion contour obtained by varying the signal cross section within its uncertainty. The contour is given as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$.
The minus $1\sigma$ variation of expected exclusion contour obtained by varying MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties (excluding signal cross section uncertainties). The contour is given as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$.
The minus $1\sigma$ variation of expected exclusion contour obtained by varying MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties (excluding signal cross section uncertainties). The contour is given as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$.
The plus $1\sigma$ variation of expected exclusion contour obtained by varying MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties (excluding signal cross section uncertainties). The contour is given as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$.
The plus $1\sigma$ variation of expected exclusion contour obtained by varying MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties (excluding signal cross section uncertainties). The contour is given as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$.
The observed exclusion contour at 95% CL as a function of the $\it{m}_{LQ_{3}^{u}}$ vs. $\mathrm{BR}(\it{m}_{LQ_{3}^{u}}\rightarrow b \tau)$. Points that are within the contours are excluded.
The observed exclusion contour at 95% CL as a function of the $\it{m}_{LQ_{3}^{u}}$ vs. $\mathrm{BR}(\it{m}_{LQ_{3}^{u}}\rightarrow b \tau)$. Points that are within the contours are excluded.
The expected exclusion contour at 95% CL as a function of the $\it{m}_{LQ_{3}^{u}}$ vs. $\mathrm{BR}(\it{m}_{LQ_{3}^{u}}\rightarrow b \tau)$. Points that are within the contours are excluded.
The expected exclusion contour at 95% CL as a function of the $\it{m}_{LQ_{3}^{u}}$ vs. $\mathrm{BR}(\it{m}_{LQ_{3}^{u}}\rightarrow b \tau)$. Points that are within the contours are excluded.
The minus $1\sigma$ variation of observed exclusion contour obtained by varying the signal cross section within its uncertainty. The contour is given as a function of the $\it{m}_{LQ_{3}^{u}}$ vs. $\mathrm{BR}(\it{m}_{LQ_{3}^{u}}\rightarrow b \tau)$
The minus $1\sigma$ variation of observed exclusion contour obtained by varying the signal cross section within its uncertainty. The contour is given as a function of the $\it{m}_{LQ_{3}^{u}}$ vs. $\mathrm{BR}(\it{m}_{LQ_{3}^{u}}\rightarrow b \tau)$
The plus $1\sigma$ variation of observed exclusion contour obtained by varying the signal cross section within its uncertainty. The contour is given as a function of the $\it{m}_{LQ_{3}^{u}}$ vs. $\mathrm{BR}(\it{m}_{LQ_{3}^{u}}\rightarrow b \tau)$
The plus $1\sigma$ variation of observed exclusion contour obtained by varying the signal cross section within its uncertainty. The contour is given as a function of the $\it{m}_{LQ_{3}^{u}}$ vs. $\mathrm{BR}(\it{m}_{LQ_{3}^{u}}\rightarrow b \tau)$
The plus $1\sigma$ variation of expected exclusion contour obtained by varying MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties (excluding signal cross section uncertainties). The contour is given as a function of the $\it{m}_{LQ_{3}^{u}}$ vs. $\mathrm{BR}(\it{m}_{LQ_{3}^{u}}\rightarrow b \tau)$
The plus $1\sigma$ variation of expected exclusion contour obtained by varying MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties (excluding signal cross section uncertainties). The contour is given as a function of the $\it{m}_{LQ_{3}^{u}}$ vs. $\mathrm{BR}(\it{m}_{LQ_{3}^{u}}\rightarrow b \tau)$
The minus $1\sigma$ variation of expected exclusion contour obtained by varying MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties (excluding signal cross section uncertainties). The contour is given as a function of the $\it{m}_{LQ_{3}^{u}}$ vs. $\mathrm{BR}(\it{m}_{LQ_{3}^{u}}\rightarrow b \tau)$
The minus $1\sigma$ variation of expected exclusion contour obtained by varying MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties (excluding signal cross section uncertainties). The contour is given as a function of the $\it{m}_{LQ_{3}^{u}}$ vs. $\mathrm{BR}(\it{m}_{LQ_{3}^{u}}\rightarrow b \tau)$
Model dependent upper limit on the cross section for the $(\tilde{t},\tilde{\chi}^{0}_{1})$ signal grid. The column titled 'Leading Region' stores information on which of the fit regions (SRA-B, SRC or SRD) is the dominant based on the expected CLs values.
Model dependent upper limit on the cross section for the $(\tilde{t},\tilde{\chi}^{0}_{1})$ signal grid. The column titled 'Leading Region' stores information on which of the fit regions (SRA-B, SRC or SRD) is the dominant based on the expected CLs values.
Expected model dependent upper limit on the cross section for the $(\tilde{t},\tilde{\chi}^{0}_{1})$ signal grid. The column titled 'Leading Region' stores information on which of the fit regions (SRA-B, SRC or SRD) is the dominant based on the expected CLs values.
Expected model dependent upper limit on the cross section for the $(\tilde{t},\tilde{\chi}^{0}_{1})$ signal grid. The column titled 'Leading Region' stores information on which of the fit regions (SRA-B, SRC or SRD) is the dominant based on the expected CLs values.
Model dependent upper limit on the cross section for the $LQ_{3}^{u}$ signal grid with $\mathrm{BR}(\it{m}_{LQ_{3}^{u}}\rightarrow b \tau))=0$ %. Only the SRA-B fit region is considered in this interpretation.
Model dependent upper limit on the cross section for the $LQ_{3}^{u}$ signal grid with $\mathrm{BR}(\it{m}_{LQ_{3}^{u}}\rightarrow b \tau))=0$ %. Only the SRA-B fit region is considered in this interpretation.
Expected model dependent upper limit on the cross section for the $LQ_{3}^{u}$ signal grid with $\mathrm{BR}(\it{m}_{LQ_{3}^{u}}\rightarrow b \tau))=0$ %. Only the SRA-B fit region is considered in this interpretation.
Expected model dependent upper limit on the cross section for the $LQ_{3}^{u}$ signal grid with $\mathrm{BR}(\it{m}_{LQ_{3}^{u}}\rightarrow b \tau))=0$ %. Only the SRA-B fit region is considered in this interpretation.
The distributions of $S$ in SRA-TW. For each bin yields for the data, total SM prediction and a representative signal point are provided. The SM prediction is provided with the MC statistical uncertainties, labeled 'stat', and the remaining uncertainties, labeled 'syst' that include detector-related systematic uncertainties and theoretical uncertainties. The signal predictions is provided with the MC statistical uncertainties only. The rightmost bin includes overflow events.
The distributions of $S$ in SRA-TW. For each bin yields for the data, total SM prediction and a representative signal point are provided. The SM prediction is provided with the MC statistical uncertainties, labeled 'stat', and the remaining uncertainties, labeled 'syst' that include detector-related systematic uncertainties and theoretical uncertainties. The signal predictions is provided with the MC statistical uncertainties only. The rightmost bin includes overflow events.
The distributions of $\it{m}^{\mathrm{R=1.2}}_{1}$ in SRB-TT. For each bin yields for the data, total SM prediction and a representative signal point are provided. The SM prediction is provided with the MC statistical uncertainties, labeled 'stat', and the remaining uncertainties, labeled 'syst' that include detector-related systematic uncertainties and theoretical uncertainties. The signal predictions is provided with the MC statistical uncertainties only. The rightmost bin includes overflow events.
The distributions of $\it{m}^{\mathrm{R=1.2}}_{1}$ in SRB-TT. For each bin yields for the data, total SM prediction and a representative signal point are provided. The SM prediction is provided with the MC statistical uncertainties, labeled 'stat', and the remaining uncertainties, labeled 'syst' that include detector-related systematic uncertainties and theoretical uncertainties. The signal predictions is provided with the MC statistical uncertainties only. The rightmost bin includes overflow events.
The distributions of R$_{ISR}$ in SRC signal regions before R$_{ISR}$ cuts are applied. For each bin yields for the data, total SM prediction and a representative signal point are provided. The SM prediction is provided with the MC statistical uncertainties, labeled 'stat', and the remaining uncertainties, labeled 'syst' that include detector-related systematic uncertainties and theoretical uncertainties. The signal predictions is provided with the MC statistical uncertainties only. The rightmost bin includes overflow events.
The distributions of R$_{ISR}$ in SRC signal regions before R$_{ISR}$ cuts are applied. For each bin yields for the data, total SM prediction and a representative signal point are provided. The SM prediction is provided with the MC statistical uncertainties, labeled 'stat', and the remaining uncertainties, labeled 'syst' that include detector-related systematic uncertainties and theoretical uncertainties. The signal predictions is provided with the MC statistical uncertainties only. The rightmost bin includes overflow events.
The distributions of $E^{miss}_{T}/\sqrt{H_{T}}$ in SRD0. For each bin yields for the data, total SM prediction and a representative signal point are provided. The SM prediction is provided with the MC statistical uncertainties, labeled 'stat', and the remaining uncertainties, labeled 'syst' that include detector-related systematic uncertainties and theoretical uncertainties. The signal predictions is provided with the MC statistical uncertainties only. The rightmost bin includes overflow events.
The distributions of $E^{miss}_{T}/\sqrt{H_{T}}$ in SRD0. For each bin yields for the data, total SM prediction and a representative signal point are provided. The SM prediction is provided with the MC statistical uncertainties, labeled 'stat', and the remaining uncertainties, labeled 'syst' that include detector-related systematic uncertainties and theoretical uncertainties. The signal predictions is provided with the MC statistical uncertainties only. The rightmost bin includes overflow events.
The distributions of $E^{miss}_{T}/\sqrt{H_{T}}$ in SRD1. For each bin yields for the data, total SM prediction and a representative signal point are provided. The SM prediction is provided with the MC statistical uncertainties, labeled 'stat', and the remaining uncertainties, labeled 'syst' that include detector-related systematic uncertainties and theoretical uncertainties. The signal predictions is provided with the MC statistical uncertainties only. The rightmost bin includes overflow events.
The distributions of $E^{miss}_{T}/\sqrt{H_{T}}$ in SRD1. For each bin yields for the data, total SM prediction and a representative signal point are provided. The SM prediction is provided with the MC statistical uncertainties, labeled 'stat', and the remaining uncertainties, labeled 'syst' that include detector-related systematic uncertainties and theoretical uncertainties. The signal predictions is provided with the MC statistical uncertainties only. The rightmost bin includes overflow events.
The distributions of $E^{miss}_{T}/\sqrt{H_{T}}$ in SRD2. For each bin yields for the data, total SM prediction and a representative signal point are provided. The SM prediction is provided with the MC statistical uncertainties, labeled 'stat', and the remaining uncertainties, labeled 'syst' that include detector-related systematic uncertainties and theoretical uncertainties. The signal predictions is provided with the MC statistical uncertainties only. The rightmost bin includes overflow events.
The distributions of $E^{miss}_{T}/\sqrt{H_{T}}$ in SRD2. For each bin yields for the data, total SM prediction and a representative signal point are provided. The SM prediction is provided with the MC statistical uncertainties, labeled 'stat', and the remaining uncertainties, labeled 'syst' that include detector-related systematic uncertainties and theoretical uncertainties. The signal predictions is provided with the MC statistical uncertainties only. The rightmost bin includes overflow events.
Cutflow for the reference point $(\it{m}_{\tilde{t}}, \it{m}_{\tilde{\chi}^{0}_{1}})= (1300,1)\ \mathrm{GeV} $ in SRA-TT. The column labelled ''Weighted yield'' shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns results in the first row, labelled ''Total'', that corresponds to plain $\sigma \cdot \mathcal{L}$ expected. The ''Derivation skim'' includes the requirements that $H_{T}$, the scalar sum of $p_{T}$ of jets and leptons, $H_{T}>150\ \mathrm{GeV}$ or that a ''baseline'' electron or muon has $p_{T}>20\ \mathrm{GeV}$. The definition of ''baseline'' electron/muons, lepton and $\tau$ vetos are described in the main body of the paper. In total 30000 raw MC events were generated prior to the specified cuts, with the column ''Unweighted yield'' collecting the numbers after each cut.
Cutflow for the reference point $(\it{m}_{\tilde{t}}, \it{m}_{\tilde{\chi}^{0}_{1}})= (1300,1)\ \mathrm{GeV} $ in SRA-TT. The column labelled ''Weighted yield'' shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns results in the first row, labelled ''Total'', that corresponds to plain $\sigma \cdot \mathcal{L}$ expected. The ''Derivation skim'' includes the requirements that $H_{T}$, the scalar sum of $p_{T}$ of jets and leptons, $H_{T}>150\ \mathrm{GeV}$ or that a ''baseline'' electron or muon has $p_{T}>20\ \mathrm{GeV}$. The definition of ''baseline'' electron/muons, lepton and $\tau$ vetos are described in the main body of the paper. In total 30000 raw MC events were generated prior to the specified cuts, with the column ''Unweighted yield'' collecting the numbers after each cut.
Cutflow for the reference point $(\it{m}_{\tilde{t}}, \it{m}_{\tilde{\chi}^{0}_{1}})= (1300,1)\ \mathrm{GeV} $ in SRA-TW. The column labelled ''Weighted yield'' shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns results in the first row, labelled ''Total'', that corresponds to plain $\sigma \cdot \mathcal{L}$ expected. The ''Derivation skim'' includes the requirements that $H_{T}$, the scalar sum of $p_{T}$ of jets and leptons, $H_{T}>150\ \mathrm{GeV}$ or that a ''baseline'' electron or muon has $p_{T}>20\ \mathrm{GeV}$. The definition of ''baseline'' electron/muons, lepton and $\tau$ vetos are described in the main body of the paper. In total 30000 raw MC events were generated prior to the specified cuts, with the column ''Unweighted yield'' collecting the numbers after each cut.
Cutflow for the reference point $(\it{m}_{\tilde{t}}, \it{m}_{\tilde{\chi}^{0}_{1}})= (1300,1)\ \mathrm{GeV} $ in SRA-TW. The column labelled ''Weighted yield'' shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns results in the first row, labelled ''Total'', that corresponds to plain $\sigma \cdot \mathcal{L}$ expected. The ''Derivation skim'' includes the requirements that $H_{T}$, the scalar sum of $p_{T}$ of jets and leptons, $H_{T}>150\ \mathrm{GeV}$ or that a ''baseline'' electron or muon has $p_{T}>20\ \mathrm{GeV}$. The definition of ''baseline'' electron/muons, lepton and $\tau$ vetos are described in the main body of the paper. In total 30000 raw MC events were generated prior to the specified cuts, with the column ''Unweighted yield'' collecting the numbers after each cut.
Cutflow for the reference point $(\it{m}_{\tilde{t}}, \it{m}_{\tilde{\chi}^{0}_{1}})= (1300,1)\ \mathrm{GeV} $ in SRA-T0. The column labelled ''Weighted yield'' shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns results in the first row, labelled ''Total'', that corresponds to plain $\sigma \cdot \mathcal{L}$ expected. The ''Derivation skim'' includes the requirements that $H_{T}$, the scalar sum of $p_{T}$ of jets and leptons, $H_{T}>150\ \mathrm{GeV}$ or that a ''baseline'' electron or muon has $p_{T}>20\ \mathrm{GeV}$. The definition of ''baseline'' electron/muons, lepton and $\tau$ vetos are described in the main body of the paper. In total 30000 raw MC events were generated prior to the specified cuts, with the column ''Unweighted yield'' collecting the numbers after each cut.
Cutflow for the reference point $(\it{m}_{\tilde{t}}, \it{m}_{\tilde{\chi}^{0}_{1}})= (1300,1)\ \mathrm{GeV} $ in SRA-T0. The column labelled ''Weighted yield'' shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns results in the first row, labelled ''Total'', that corresponds to plain $\sigma \cdot \mathcal{L}$ expected. The ''Derivation skim'' includes the requirements that $H_{T}$, the scalar sum of $p_{T}$ of jets and leptons, $H_{T}>150\ \mathrm{GeV}$ or that a ''baseline'' electron or muon has $p_{T}>20\ \mathrm{GeV}$. The definition of ''baseline'' electron/muons, lepton and $\tau$ vetos are described in the main body of the paper. In total 30000 raw MC events were generated prior to the specified cuts, with the column ''Unweighted yield'' collecting the numbers after each cut.
Cutflow for the reference point $(\it{m}_{\tilde{t}}, \it{m}_{\tilde{\chi}^{0}_{1}})= (700,400)\ \mathrm{GeV} $ in signal regions SRB-TT, SRB-TW and SRB-T0. The regions differ by the last cut applied. The column labelled ''Weighted yield'' shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns results in the first row, labelled ''Total'', that corresponds to plain $\sigma \cdot \mathcal{L}$ expected. The ''Derivation skim'' includes the requirements that $H_{T}$, the scalar sum of $p_{T}$ of jets and leptons, $H_{T}>150\ \mathrm{GeV}$ or that a ''baseline'' electron or muon has $p_{T}>20\ \mathrm{GeV}$. The definition of ''baseline'' electron/muons, lepton and $\tau$ vetos are described in the main body of the paper. In total 60000 raw MC events were generated prior to the specified cuts, with the column ''Unweighted yield'' collecting the numbers after each cut.
Cutflow for the reference point $(\it{m}_{\tilde{t}}, \it{m}_{\tilde{\chi}^{0}_{1}})= (700,400)\ \mathrm{GeV} $ in signal regions SRB-TT, SRB-TW and SRB-T0. The regions differ by the last cut applied. The column labelled ''Weighted yield'' shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns results in the first row, labelled ''Total'', that corresponds to plain $\sigma \cdot \mathcal{L}$ expected. The ''Derivation skim'' includes the requirements that $H_{T}$, the scalar sum of $p_{T}$ of jets and leptons, $H_{T}>150\ \mathrm{GeV}$ or that a ''baseline'' electron or muon has $p_{T}>20\ \mathrm{GeV}$. The definition of ''baseline'' electron/muons, lepton and $\tau$ vetos are described in the main body of the paper. In total 60000 raw MC events were generated prior to the specified cuts, with the column ''Unweighted yield'' collecting the numbers after each cut.
Cutflow for the reference point $(\it{m}_{\tilde{t}}, \it{m}_{\tilde{\chi}^{0}_{1}})= (500,327)\ \mathrm{GeV} $ in regions SRC-1, SRC-2, SRC-3, SRC-4 and SRC-5. The regions differ by the last cut applied. The column labelled ''Weighted yield'' shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns results in the first row, labelled ''Total'', that corresponds to plain $\sigma \cdot \mathcal{L}$ expected. The ''Derivation skim'' includes the requirements that $H_{T}$, the scalar sum of $p_{T}$ of jets and leptons, $H_{T}>150\ \mathrm{GeV}$ or that a ''baseline'' electron or muon has $p_{T}>20\ \mathrm{GeV}$. The definition of ''baseline'' electron/muons, lepton and $\tau$ vetos are described in the main body of the paper. In total 150000 raw MC events with filter efficiency of 0.384 were generated prior to the specified cuts, with the column ''Unweighted yield'' collecting the numbers after each cut.
Cutflow for the reference point $(\it{m}_{\tilde{t}}, \it{m}_{\tilde{\chi}^{0}_{1}})= (500,327)\ \mathrm{GeV} $ in regions SRC-1, SRC-2, SRC-3, SRC-4 and SRC-5. The regions differ by the last cut applied. The column labelled ''Weighted yield'' shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns results in the first row, labelled ''Total'', that corresponds to plain $\sigma \cdot \mathcal{L}$ expected. The ''Derivation skim'' includes the requirements that $H_{T}$, the scalar sum of $p_{T}$ of jets and leptons, $H_{T}>150\ \mathrm{GeV}$ or that a ''baseline'' electron or muon has $p_{T}>20\ \mathrm{GeV}$. The definition of ''baseline'' electron/muons, lepton and $\tau$ vetos are described in the main body of the paper. In total 150000 raw MC events with filter efficiency of 0.384 were generated prior to the specified cuts, with the column ''Unweighted yield'' collecting the numbers after each cut.
Cutflow for the reference point $(\it{m}_{\tilde{t}}, \it{m}_{\tilde{\chi}^{0}_{1}})= (550,500)\ \mathrm{GeV} $ in SRD0. The column labelled ''Weighted yield'' shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns results in the first row, labelled ''Total'', that corresponds to plain $\sigma \cdot \mathcal{L}$ expected. The ''Derivation skim'' includes the requirements that $H_{T}$, the scalar sum of $p_{T}$ of jets and leptons, $H_{T}>150\ \mathrm{GeV}$ or that a ''baseline'' electron or muon has $p_{T}>20\ \mathrm{GeV}$. The definition of ''baseline'' electron/muons, lepton and $\tau$ vetos are described in the main body of the paper. In total 90000 raw MC events with filter efficiency of 0.428 were generated prior to the specified cuts, with the column ''Unweighted yield'' collecting the numbers after each cut.
Cutflow for the reference point $(\it{m}_{\tilde{t}}, \it{m}_{\tilde{\chi}^{0}_{1}})= (550,500)\ \mathrm{GeV} $ in SRD0. The column labelled ''Weighted yield'' shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns results in the first row, labelled ''Total'', that corresponds to plain $\sigma \cdot \mathcal{L}$ expected. The ''Derivation skim'' includes the requirements that $H_{T}$, the scalar sum of $p_{T}$ of jets and leptons, $H_{T}>150\ \mathrm{GeV}$ or that a ''baseline'' electron or muon has $p_{T}>20\ \mathrm{GeV}$. The definition of ''baseline'' electron/muons, lepton and $\tau$ vetos are described in the main body of the paper. In total 90000 raw MC events with filter efficiency of 0.428 were generated prior to the specified cuts, with the column ''Unweighted yield'' collecting the numbers after each cut.
Cutflow for the reference point $(\it{m}_{\tilde{t}}, \it{m}_{\tilde{\chi}^{0}_{1}})= (550,500)\ \mathrm{GeV} $ in SRD1. The column labelled ''Weighted yield'' shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns results in the first row, labelled ''Total'', that corresponds to plain $\sigma \cdot \mathcal{L}$ expected. The ''Derivation skim'' includes the requirements that $H_{T}$, the scalar sum of $p_{T}$ of jets and leptons, $H_{T}>150\ \mathrm{GeV}$ or that a ''baseline'' electron or muon has $p_{T}>20\ \mathrm{GeV}$. The definition of ''baseline'' electron/muons, lepton and $\tau$ vetos are described in the main body of the paper. In total 90000 raw MC events with filter efficiency of 0.428 were generated prior to the specified cuts, with the column ''Unweighted yield'' collecting the numbers after each cut.
Cutflow for the reference point $(\it{m}_{\tilde{t}}, \it{m}_{\tilde{\chi}^{0}_{1}})= (550,500)\ \mathrm{GeV} $ in SRD1. The column labelled ''Weighted yield'' shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns results in the first row, labelled ''Total'', that corresponds to plain $\sigma \cdot \mathcal{L}$ expected. The ''Derivation skim'' includes the requirements that $H_{T}$, the scalar sum of $p_{T}$ of jets and leptons, $H_{T}>150\ \mathrm{GeV}$ or that a ''baseline'' electron or muon has $p_{T}>20\ \mathrm{GeV}$. The definition of ''baseline'' electron/muons, lepton and $\tau$ vetos are described in the main body of the paper. In total 90000 raw MC events with filter efficiency of 0.428 were generated prior to the specified cuts, with the column ''Unweighted yield'' collecting the numbers after each cut.
Cutflow for the reference point $(\it{m}_{\tilde{t}}, \it{m}_{\tilde{\chi}^{0}_{1}})= (550,500)\ \mathrm{GeV} $ in SRD2. The column labelled ''Weighted yield'' shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns results in the first row, labelled ''Total'', that corresponds to plain $\sigma \cdot \mathcal{L}$ expected. The ''Derivation skim'' includes the requirements that $H_{T}$, the scalar sum of $p_{T}$ of jets and leptons, $H_{T}>150\ \mathrm{GeV}$ or that a ''baseline'' electron or muon has $p_{T}>20\ \mathrm{GeV}$. The definition of ''baseline'' electron/muons, lepton and $\tau$ vetos are described in the main body of the paper. In total 90000 raw MC events with filter efficiency of 0.428 were generated prior to the specified cuts, with the column ''Unweighted yield'' collecting the numbers after each cut.
Cutflow for the reference point $(\it{m}_{\tilde{t}}, \it{m}_{\tilde{\chi}^{0}_{1}})= (550,500)\ \mathrm{GeV} $ in SRD2. The column labelled ''Weighted yield'' shows the results including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns results in the first row, labelled ''Total'', that corresponds to plain $\sigma \cdot \mathcal{L}$ expected. The ''Derivation skim'' includes the requirements that $H_{T}$, the scalar sum of $p_{T}$ of jets and leptons, $H_{T}>150\ \mathrm{GeV}$ or that a ''baseline'' electron or muon has $p_{T}>20\ \mathrm{GeV}$. The definition of ''baseline'' electron/muons, lepton and $\tau$ vetos are described in the main body of the paper. In total 90000 raw MC events with filter efficiency of 0.428 were generated prior to the specified cuts, with the column ''Unweighted yield'' collecting the numbers after each cut.
Signal acceptance in SRA-TT for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{3}$
Signal acceptance in SRA-TT for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{3}$
Signal efficiency in SRA-TT for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in %.
Signal efficiency in SRA-TT for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in %.
Signal acceptance in SRA-TW for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{3}$
Signal acceptance in SRA-TW for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{3}$
Signal efficiency in SRA-TW for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in %.
Signal efficiency in SRA-TW for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in %.
Signal acceptance in SRA-T0 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{3}$
Signal acceptance in SRA-T0 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{3}$
Signal efficiency in SRA-T0 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in %.
Signal efficiency in SRA-T0 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in %.
Signal acceptance in SRB-TT for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{3}$
Signal acceptance in SRB-TT for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{3}$
Signal efficiency in SRB-TT for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in %.
Signal efficiency in SRB-TT for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in %.
Signal acceptance in SRB-TW for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{3}$
Signal acceptance in SRB-TW for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{3}$
Signal efficiency in SRB-TW for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in %.
Signal efficiency in SRB-TW for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in %.
Signal acceptance in SRB-T0 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{3}$
Signal acceptance in SRB-T0 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{3}$
Signal efficiency in SRB-T0 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in %.
Signal efficiency in SRB-T0 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in %.
Signal acceptance in SRC1 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{5}$ and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal acceptance in SRC1 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{5}$ and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal efficiency in SRC1 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in % and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal efficiency in SRC1 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in % and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal acceptance in SRC2 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{5}$ and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal acceptance in SRC2 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{5}$ and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal efficiency in SRC2 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in % and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal efficiency in SRC2 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in % and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal acceptance in SRC3 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{5}$ and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal acceptance in SRC3 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{5}$ and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal efficiency in SRC3 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in % and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal efficiency in SRC3 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in % and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal acceptance in SRC4 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{5}$ and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal acceptance in SRC4 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{5}$ and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal efficiency in SRC4 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in % and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ plane showed in the paper plot.
Signal efficiency in SRC4 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in % and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ plane showed in the paper plot.
Signal acceptance in SRC5 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{5}$ and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ plane showed in the paper plot.
Signal acceptance in SRC5 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{5}$ and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ plane showed in the paper plot.
Signal efficiency in SRC5 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in % and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal efficiency in SRC5 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in % and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal acceptance in SRD0 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{5}$ and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal acceptance in SRD0 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{5}$ and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal efficiency in SRD0 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in % and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal efficiency in SRD0 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in % and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal acceptance in SRD1 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{5}$ and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal acceptance in SRD1 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{5}$ and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal efficiency in SRD1 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in % and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal efficiency in SRD1 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in % and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal acceptance in SRD2 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{5}$ and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal acceptance in SRD2 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the acceptance given in the table is multiplied by factor of $10^{5}$ and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal efficiency in SRD2 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in % and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Signal efficiency in SRD2 for simplified $(\tilde{t},\tilde{\chi^{0}_1})$ model. Please mind that the efficiency in the table is reported in % and the results are given here in the $\it{m}_{\tilde{t}}-\it{m}_{\tilde{\chi}^{0}_{1}}$ plane as opposed to the $\it{m}_{\tilde{t}}-\Delta(\it{m}_{\tilde{\chi}^{0}_{1}},\it{m}_{\tilde{t}})$ one showed in the paper plot.
Results of a search for new particles decaying into eight or more jets and moderate missing transverse momentum are presented. The analysis uses 139 fb$^{-1}$ of proton$-$proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. The selection rejects events containing isolated electrons or muons, and makes requirements according to the number of $b$-tagged jets and the scalar sum of masses of large-radius jets. The search extends previous analyses both in using a larger dataset and by employing improved jet and missing transverse momentum reconstruction methods which more cleanly separate signal from background processes. No evidence for physics beyond the Standard Model is found. The results are interpreted in the context of supersymmetry-inspired simplified models, significantly extending the limits on the gluino mass in those models. In particular, limits on the gluino mass are set at 2 TeV when the lightest neutralino is nearly massless in a model assuming a two-step cascade decay via the lightest chargino and second-lightest neutralino.
Post-fit yields for data and prediction in each of the multi-bin signal regions for the 8 jet regions.
Post-fit yields for data and prediction in each of the multi-bin signal regions for the 9 jet regions.
Post-fit yields for data and prediction in each of the multi-bin signal regions for the 10 jet regions.
Post-fit yields for data and prediction in each of the single-bin signal regions of the analysis.
Observed 95% confidence level limit for the two-step signal grid.
Observed 95% confidence level limit for the two-step signal grid with the signal cross section increased by one sigma.
Observed 95% confidence level limit for the two-step signal grid with the signal cross section decreased by one sigma.
Expected 95% confidence level limit for the two-step signal grid.
Expected 95% confidence level limit for the two-step signal grid plus one sigma from experimental systematics.
Expected 95% confidence level limit for the two-step signal grid minus one sigma from experimental systematics.
Observed 95% confidence level limit for the Gtt signal grid.
Observed 95% confidence level limit for the Gtt signal grid with the signal cross section increased by one sigma.
Observed 95% confidence level limit for the Gtt signal grid with the signal cross section decreased by one sigma.
Expected 95% confidence level limit for the Gtt signal grid.
Expected 95% confidence level limit for the Gtt signal grid plus one sigma from experimental systematics.
Expected 95% confidence level limit for the Gtt signal grid minus one sigma from experimental systematics.
Observed 95% confidence level limit for the RPV signal grid.
Observed 95% confidence level limit for the RPV signal grid with the signal cross section increased by one sigma.
Observed 95% confidence level limit for the RPV signal grid with the signal cross section decreased by one sigma.
Expected 95% confidence level limit for the RPV signal grid.
Expected 95% confidence level limit for the RPV signal grid plus one sigma from experimental systematics.
Expected 95% confidence level limit for the RPV signal grid minus one sigma from experimental systematics.
Observed 95% confidence level limit for the two-step signal grid.
Expected 95% confidence level limit for the two-step signal grid.
Observed 95% confidence level limit for the Gtt signal grid.
Expected 95% confidence level limit for the Gtt signal grid.
Observed 95% confidence level limit for the RPV signal grid.
Expected 95% confidence level limit for the RPV signal grid.
$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ distribution in the signal region SR-10ij50-0ib-MJ340. Two benchmark signal models are shown along with the background yields. These models, each representing a single mass point, are labelled 'RPV' with $(m_{\tilde{g}}, m_{\tilde{t}}) = (1600, 600) \, \mathrm{GeV}$ and 'two-step' with $(m_{\tilde{g}}, m_{\tilde{\chi^{0}_{1}}}) = (1600, 100) \, \mathrm{GeV}$.
$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ distribution in the signal region SR-12ij50-2ib. Two benchmark signal models are shown along with the background yields. These models, each representing a single mass point, are labelled 'RPV' with $(m_{\tilde{g}}, m_{\tilde{t}}) = (1600, 600) \, \mathrm{GeV}$ and 'two-step' with $(m_{\tilde{g}}, m_{\tilde{\chi^{0}_{1}}}) = (1600, 100) \, \mathrm{GeV}$.
$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ distribution in the signal region SR-9ij80-0ib. Two benchmark signal models are shown along with the background yields. These models, each representing a single mass point, are labelled 'RPV' with $(m_{\tilde{g}}, m_{\tilde{t}}) = (1600, 600) \, \mathrm{GeV}$ and 'two-step' with $(m_{\tilde{g}}, m_{\tilde{\chi^{0}_{1}}}) = (1600, 100) \, \mathrm{GeV}$.
Number of signal events expected for $139 \, \mathrm{fb}^{-1} $ after different analysis selections in the signal region SR-8ij50-0ib-MJ500. This 'two-step' model requires that a strongly produced gluino decays into quarks, the W and Z bosons, and the lightest stable neutralino where $(m_{\tilde{g}}, m_{\tilde{\chi^{0}_{1}}}) = (1600, 100) \, \mathrm{GeV}$.
Number of signal events expected for $139 \, \mathrm{fb}^{-1} $ after different analysis selections in the signal region SR-9ij50-0ib-MJ340. This 'two-step' model requires that a strongly produced gluino decays into quarks, the W and Z bosons, and the lightest stable neutralino where $(m_{\tilde{g}}, m_{\tilde{\chi^{0}_{1}}}) = (1600, 100) \, \mathrm{GeV}$.
Number of signal events expected for $139 \, \mathrm{fb}^{-1} $ after different analysis selections in the signal region SR-10ij50-0ib-MJ340. This 'two-step' model requires that a strongly produced gluino decays into quarks, the W and Z bosons, and the lightest stable neutralino where $(m_{\tilde{g}}, m_{\tilde{\chi^{0}_{1}}}) = (1600, 100) \, \mathrm{GeV}$.
Number of signal events expected for $139 \, \mathrm{fb}^{-1} $ after different analysis selections in the signal region SR-10ij50-0ib-MJ500. This 'two-step' model requires that a strongly produced gluino decays into quarks, the W and Z bosons, and the lightest stable neutralino where $(m_{\tilde{g}}, m_{\tilde{\chi^{0}_{1}}}) = (1600, 100) \, \mathrm{GeV}$.
Number of signal events expected for $139 \, \mathrm{fb}^{-1} $ after different analysis selections in the signal region SR-10ij50-1ib-MJ500. This 'two-step' model requires that a strongly produced gluino decays into quarks, the W and Z bosons, and the lightest stable neutralino where $(m_{\tilde{g}}, m_{\tilde{\chi^{0}_{1}}}) = (1600, 100) \, \mathrm{GeV}$.
Number of signal events expected for $139 \, \mathrm{fb}^{-1} $ after different analysis selections in the signal region SR-11ij50-0ib. This 'two-step' model requires that a strongly produced gluino decays into quarks, the W and Z bosons, and the lightest stable neutralino where $(m_{\tilde{g}}, m_{\tilde{\chi^{0}_{1}}}) = (1600, 100) \, \mathrm{GeV}$.
Number of signal events expected for $139 \, \mathrm{fb}^{-1} $ after different analysis selections in the signal region SR-12ij50-2ib. This 'two-step' model requires that a strongly produced gluino decays into quarks, the W and Z bosons, and the lightest stable neutralino where $(m_{\tilde{g}}, m_{\tilde{\chi^{0}_{1}}}) = (1600, 100) \, \mathrm{GeV}$.
Number of signal events expected for $139 \, \mathrm{fb}^{-1} $ after different analysis selections in the signal region SR-9ij80-0ib. This 'two-step' model requires that a strongly produced gluino decays into quarks, the W and Z bosons, and the lightest stable neutralino where $(m_{\tilde{g}}, m_{\tilde{\chi^{0}_{1}}}) = (1600, 100) \, \mathrm{GeV}$.
Acceptance for the signal region SR-8ij50-0ib-MJ500 showing the acceptance for the complete two-step signal grid.
Efficiency for the signal region SR-8ij50-0ib-MJ500 showing the efficiency for the complete two-step signal grid.
Acceptance for the signal region SR-9ij50-0ib-MJ340 showing the acceptance for the complete two-step signal grid.
Efficiency for the signal region SR-9ij50-0ib-MJ340 showing the efficiency for the complete two-step signal grid.
Acceptance for the signal region SR-10ij50-0ib-MJ340 showing the acceptance for the complete two-step signal grid.
Efficiency for the signal region SR-10ij50-0ib-MJ340 showing the efficiency for the complete two-step signal grid.
Acceptance for the signal region SR-10ij50-0ib-MJ500 showing the acceptance for the complete two-step signal grid.
Efficiency for the signal region SR-10ij50-0ib-MJ500 showing the efficiency for the complete two-step signal grid.
Acceptance for the signal region SR-10ij50-1ib-MJ500 showing the acceptance for the complete two-step signal grid.
Efficiency for the signal region SR-10ij50-1ib-MJ500 showing the efficiency for the complete two-step signal grid.
Acceptance for the signal region SR-11ij50-0ib showing the acceptance for the complete two-step signal grid.
Efficiency for the signal region SR-11ij50-0ib showing the efficiency for the complete two-step signal grid.
Acceptance for the signal region SR-12ij50-2ib showing the acceptance for the complete two-step signal grid.
Efficiency for the signal region SR-12ij50-2ib showing the efficiency for the complete two-step signal grid.
Acceptance for the signal region SR-9ij80-0ib showing the acceptance for the complete two-step signal grid.
Efficiency for the signal region SR-9ij80-0ib showing the efficiency for the complete two-step signal grid.
Post-fit yields for data and prediction in each of the single-bin validation regions to test the $N_{\mathrm{jet}}$ extraction.
Post-fit yields for data and prediction in each of the single-bin validation regions to test the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ extrapolation.
Post-fit yields for data and prediction in each of the multi-bin validation regions to test the $N_{\mathrm{jet}}$ extraction.
Post-fit yields for data and prediction in each of the multi-bin validation regions to test the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ extrapolation.
The observed Cls from the best expected signal regions for the two-step decay.
The observed Cls from the best expected signal regions for the Gtt decay.
The observed Cls from the best expected signal regions for the RPV decay.
Number of events in each signal region broken down by background type and the number of observed data events.
From left to right; the $95\%$ CL upper limits on the visible cross section (${\langle \epsilon\sigma \rangle}^{95}_{obs}$) and on the number of signal events. Next is the $95\%$ CL upper limit on the number of signal events, given the expected number of background events. The last two columns show the confidence level for the background only hypothesis ($CL_{b}$) and the dicovery $p$-value along with the Gaussian significance (Z).
A search for long-lived particles decaying into an oppositely charged lepton pair, $\mu\mu$, $ee$, or $e\mu$, is presented using 32.8 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s}=13$ TeV by the ATLAS detector at the LHC. Candidate leptons are required to form a vertex, within the inner tracking volume of ATLAS, displaced from the primary $pp$ interaction region. No lepton pairs with an invariant mass greater than 12 GeV are observed, consistent with the background expectations derived from data. The detection efficiencies for generic resonances with lifetimes ($c\tau$) of 100-1000 mm decaying into a dilepton pair with masses between 0.1-1.0 TeV are presented as a function of $p_T$ and decay radius of the resonances to allow the extraction of upper limits on the cross sections for theoretical models. The result is also interpreted in a supersymmetric model in which the lightest neutralino, produced via squark-antisquark production, decays into $\ell^{+}\ell^{'-}\nu$ ($\ell, \ell^{'} = e$, $\mu$) with a finite lifetime due to the presence of R-parity violating couplings. Cross-section limits are presented for specific squark and neutralino masses. For a 700 GeV squark, neutralinos with masses of 50-500 GeV and mean proper lifetimes corresponding to $c\tau$ values between 1 mm to 6 m are excluded. For a 1.6 TeV squark, $c\tau$ values between 3 mm to 1 m are excluded for 1.3 TeV neutralinos.
dRcos distribution of dimuon pairs (scaled) and dimuon vertices in the cosmic rays control region. The distribution of all dimuon pairs is scaled to the DV distribution.
Dependence of the overall signal efficiency on the transverse decay radius Rxy of the long-lived Z' for Z' -> ee. The error bars indicate the total uncertainties.
Dependence of the overall signal efficiency on the pT of the long-lived Z' for Z' -> ee. The error bars indicate the total uncertainties.
Dependence of the overall signal efficiency on the transverse decay radius Rxy of the long-lived Z' for Z' -> emu. The error bars indicate the total uncertainties.
Dependence of the overall signal efficiency on the pT of the long-lived Z' for Z' -> emu. The error bars indicate the total uncertainties.
Dependence of the overall signal efficiency on the transverse decay radius Rxy of the long-lived Z' for Z' -> mumu. The error bars indicate the total uncertainties.
Dependence of the overall signal efficiency on the pT of the long-lived Z' for Z' -> mumu. The error bars indicate the total uncertainties.
Overall signal efficiency as a function of the mean proper lifetime (ctau) of the neutralino for the lambda121 scenario of the RPV SUSY model. The error bars indicate the total uncertainties.
Overall signal efficiency as a function of the mean proper lifetime (ctau) of the neutralino for the lambda122 scenario of the RPV SUSY model. The error bars indicate the total uncertainties.
95% CL upper limits on the squark-antisquark production cross-section as a function of the mean proper lifetime (ctau) of the neutralino for the lambda121 scenario of the RPV SUSY model and a 700 GeV squark. The uncertainties of the expected limit indicate the +-1sigma variations.
95% CL upper limits on the squark-antisquark production cross-section as a function of the mean proper lifetime (ctau) of the neutralino for the lambda122 scenario of the RPV SUSY model and a 700 GeV squark. The uncertainties of the expected limit indicate the +-1sigma variations.
95% CL upper limits on the squark-antisquark production cross-section as a function of the mean proper lifetime (ctau) of the neutralino for the lambda121 scenario of the RPV SUSY model and a 1600 GeV squark. The uncertainties of the expected limit indicate the +-1sigma variations.
95% CL upper limits on the squark-antisquark production cross-section as a function of the mean proper lifetime (ctau) of the neutralino for the lambda122 scenario of the RPV SUSY model and a 1600 GeV squark. The uncertainties of the expected limit indicate the +-1sigma variations.
Fraction of detector volume covered by the material veto as a function of z and Rxy of the displaced dilepton vertex.
Fraction of detector volume covered by the disabled pixel modules veto veto as a function of z and Rxy of the displaced dilepton vertex.
Observed Rxy distribution of vertices composed of two non-leptonic tracks in a control sample in the data and the predicted distribution obtained from the event mixing. The error bars indicate the statistical uncertainties.
Rxy distributions of Kshort vertices from the large radius tracking in the data and background MC samples. Data has been normalised such that the total number of Kshort from the standard tracking in the data agrees with the total number of Kshort from the standard tracking in the MC. The error bars indicate the statistical uncertainties.
Acceptance per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> eenu. The error bars indicate the statistical uncertainties.
Acceptance per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> emunu. The error bars indicate the statistical uncertainties.
Acceptance per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> mumunu. The error bars indicate the statistical uncertainties.
Detection efficiency per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> eenu. The error bars indicate the total uncertainties.
Detection efficiency per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> emunu. The error bars indicate the total uncertainties.
Detection efficiency per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> mumunu. The error bars indicate the total uncertainties.
Overall signal efficiency (acceptance times efficiency) per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> eenu. The error bars indicate the total uncertainties.
Overall signal efficiency (acceptance times efficiency) per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> emunu. The error bars indicate the total uncertainties.
Overall signal efficiency (acceptance times efficiency) per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> mumunu. The error bars indicate the total uncertainties.
Detection efficiency per decay for Rxy < 22 mm as a function of the invariant mass and pT of the electron pair in LLP -> eeX.
Detection efficiency per decay for 22 <= Rxy < 38 mm as a function of the invariant mass and pT of the electron pair in LLP -> eeX.
Detection efficiency per decay for 38 <= Rxy < 73 mm as a function of the invariant mass and pT of the electron pair in LLP -> eeX.
Detection efficiency per decay for 73 <= Rxy < 111 mm as a function of the invariant mass and pT of the electron pair in LLP -> eeX.
Detection efficiency per decay for 111 <= Rxy < 145 mm as a function of the invariant mass and pT of the electron pair in LLP -> eeX.
Detection efficiency per decay for 145 <= Rxy < 300 mm as a function of the invariant mass and pT of the electron pair in LLP -> eeX.
Detection efficiency per decay for Rxy < 22 mm as a function of the invariant mass and pT of the electron and muon pair in LLP -> emuX.
Detection efficiency per decay for 22 <= Rxy < 38 mm as a function of the invariant mass and pT of the electron and muon pair in LLP -> emuX.
Detection efficiency per decay for 38 <= Rxy < 73 mm as a function of the invariant mass and pT of the electron and muon pair in LLP -> emuX.
Detection efficiency per decay for 73 <= Rxy < 111 mm as a function of the invariant mass and pT of the electron and muon pair in LLP -> emuX.
Detection efficiency per decay for 111 <= Rxy < 145 mm as a function of the invariant mass and pT of the electron and muon pair in LLP -> emuX.
Detection efficiency per decay for 145 <= Rxy < 300 mm as a function of the invariant mass and pT of the electron and muon pair in LLP -> emuX.
Detection efficiency per decay for Rxy < 22 mm as a function of the invariant mass and pT of the muon pair in LLP -> mumuX.
Detection efficiency per decay for 22 <= Rxy < 38 mm as a function of the invariant mass and pT of the muon pair in LLP -> mumuX.
Detection efficiency per decay for 38 <= Rxy < 73 mm as a function of the invariant mass and pT of the muon pair in LLP -> mumuX.
Detection efficiency per decay for 73 <= Rxy < 111 mm as a function of the invariant mass and pT of the muon pair in LLP -> mumuX.
Detection efficiency per decay for 111 <= Rxy < 145 mm as a function of the invariant mass and pT of the muon pair in LLP -> mumuX.
Detection efficiency per decay for 145 <= Rxy < 300 mm as a function of the invariant mass and pT of the muon pair in LLP -> mumuX.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 100 GeV and LLP -> ee.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 100 GeV and LLP -> emu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 100 GeV and LLP -> mumu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 250 GeV and LLP -> ee.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 250 GeV and LLP -> emu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 250 GeV and LLP -> mumu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 500 GeV and LLP -> ee.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 500 GeV and LLP -> emu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 500 GeV and LLP -> mumu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 750 GeV and LLP -> ee.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 750 GeV and LLP -> emu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 750 GeV and LLP -> mumu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 1000 GeV and LLP -> ee.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 1000 GeV and LLP -> emu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 1000 GeV and LLP -> mumu.
Acceptance, detection efficiency, and overall signal efficiency in the Z' toy model for mZ' = 100 GeV, three mean proper lifetimes (ctau) and the three decay modes of the Z'.
Acceptance, detection efficiency, and overall signal efficiency in the Z' toy model for mZ' = 250 GeV, three mean proper lifetimes (ctau) and the three decay modes of the Z'.
Acceptance, detection efficiency, and overall signal efficiency in the Z' toy model for mZ' = 500 GeV, three mean proper lifetimes (ctau) and the three decay modes of the Z'.
Acceptance, detection efficiency, and overall signal efficiency in the Z' toy model for mZ' = 750 GeV, three mean proper lifetimes (ctau) and the three decay modes of the Z'.
Acceptance, detection efficiency, and overall signal efficiency in the Z' toy model for mZ' = 1000 GeV, three mean proper lifetimes (ctau) and the three decay modes of the Z'.
The inclusive J/psi production cross-section and fraction of J/psi mesons produced in B-hadron decays are measured in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector at the LHC, as a function of the transverse momentum and rapidity of the J/psi, using 2.3 pb-1 of integrated luminosity. The cross-section is measured from a minimum pT of 1 GeV to a maximum of 70 GeV and for rapidities within |y| < 2.4 giving the widest reach of any measurement of J/psi production to date. The differential production cross-sections of prompt and non-prompt J/psi are separately determined and are compared to Colour Singlet NNLO*, Colour Evaporation Model, and FONLL predictions.
Total cross section for inclusive andd non-prompt J/PSI (-> MU+MU-) production in the range |y| < 2.4 and pT > 7 GeV under the FLAT (ie isotropic) production scenario. The second (sys) error is the uncertainty assoicated with the spin and the third is the luminosity uncertainty.
Total cross section for inclusive and non-prompt J/PSI (-> MU+MU-) production in the range 1.5 < |y| < 2 and pT > 1 GeV under the FLAT (ie isotropic) production scenario. The second (sys) error is the uncertainty assoicated with the spin and the third is the luminosity uncertainty.
Inclusive J/psi production cross-section as a function of J/psi pT in the J/psi rapidity (|y|) bin 2<|y|<2.4. The first uncertainty is statistical, the second is systematic and the third encapsulates any possible variation due to spin-alignment from the unpolarised central value.
Inclusive J/psi production cross-section as a function of J/psi pT in the J/psi rapidity (|y|) bin 1.5<|y|<2. The first uncertainty is statistical, the second is systematic and the third encapsulates any possible variation due to spin-alignment from the unpolarised central value.
Non-prompt to inclusive production cross-section fraction fB as a function of J/psi pT for J/psi rapidity |y|<0.75 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0). The spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses, plus the range of non-prompt cross-sections within lambda_theta = +/- 0.1. The first uncertainty is statistical, the second uncertainty is systematic, the third number is the uncertainty due to spin-alignment.}.
Non-prompt to inclusive production cross-section fraction fB as a function of J/psi pT for J/psi rapidity 0.75<|y|<1.5 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0). The spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses, plus the range of non-prompt cross-sections within lambda_theta = +/-0.1. The first uncertainty is statistical, the second uncertainty is systematic, the third number is the uncertainty due to spin-alignment.
Non-prompt to inclusive production cross-section fraction fB as a function of J/psi pT for J/psi rapidity 1.5<|y|<2 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0). The spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses, plus the range of non-prompt cross-sections within lambda_theta = +/-0.1. The first uncertainty is statistical, the second uncertainty is systematic, the third number is the uncertainty due to spin-alignment.
Non-prompt to inclusive production cross-section fraction fB as a function of J/psi pT for J/psi rapidity 2<|y|<2.4 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0). The spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses, plus the range of non-prompt cross-sections within lambda_theta =+/-0.1. The first uncertainty is statistical, the second uncertainty is systematic, the third number is the uncertainty due to spin-alignment.
Unweighted J/psi candidate yields in bins of $J/psi transverse momentum and rapidity. Uncertainties are statistical only.
Summary table of all sources of considered systematic uncertainty and statistical uncertainty (as a percentage) on the corrected inclusive J/psi production cross-section, for absolute J/psi rapidities within 1.5<|y|<2. The sources of systematic error shown are, in order, Acceptance, Muon recognition, Trigger, Fitting and the Total systematics. Also shown in the last error is the possible envelope of variation the central result due to uncertainty on spin-alignment of the J/psi.
Breakdown of sources of systematic uncertainty on the non-prompt J/psi fraction measurements, for the bin |y|<0.75, as a function of the J/psi pT.
Breakdown of sources of systematic uncertainty on the non-prompt J/psi fraction measurements, for the bin 0.75<|y|<1.5, as a function of the J/psi pT.
Breakdown of sources of systematic uncertainty on the non-prompt J/psi fraction measurements, for the bin 1.75<|y|<2.0, as a function of the J/psi pT.
Breakdown of sources of systematic uncertainty on the non-prompt J/psi fraction measurements, for the bin 2.0<|y|<2.4, as a function of the J/psi pT.
Results are presented of a search for supersymmetric particles in events with large missing transverse momentum and at least one heavy flavour jet candidate in sqrt{s} = 7 TeV proton-proton collisions. In a data sample corresponding to an integrated luminosity of 35 pb-1 recorded by the ATLAS experiment at the Large Hadron Collider, no significant excess is observed with respect to the prediction for Standard Model processes. For R-parity conserving models in which sbottoms (stops) are the only squarks to appear in the gluino decay cascade, gluino masses below 590 GeV (520 GeV) are excluded at the 95% C.L. The results are also interpreted in an MSUGRA/CMSSM supersymmetry breaking scenario with tan(beta)=40 and in an SO(10) model framework.
Distribution of the effective mass for data and the SM expectation in the zero-lepton plus 3 jet channel.
Distribution of the missing ET for data and the SM expectation in the zero-lepton plus 3 jet channel.
Distribution of the effective mass for data and the SM expectation in the one-lepton plus 2 jet channel.
Distribution of the missing ET for data and the SM expectation in the one-lepton plus 2 jet channel.
Observed 95 PCT exclusion limit in the M(gluino), M(sbottom) plane obtained with the zero-lepton channel data.
Expected 95 PCT exclusion limit in the M(gluino), M(sbottom) plane obtained with the zero-lepton channel data.
Observed and expected 95 PCT CL upper limits on the gluino-mediated and stop pair production cross section as a function of the gluino mass for a stop mass od 180 GeV, for the one-lepton analysis.
Observed and expected 95 PCT CL upper limits on the gluino-mediated and stop pair production cross section as a function of the gluino mass for a stop mass od 210 GeV, for the one-lepton analysis.
Observed 95 PCT CL exclusion limits from the zero-lepton analysis on the MSUGRA/CMSSM scenario with tan(beta) = 40, A0 = 0 and MU > 0.
Expected 95 PCT CL exclusion limits from the zero-lepton analysis on the MSUGRA/CMSSM scenario with tan(beta) = 40, A0 = 0 and MU > 0.
Observed 95 PCT CL exclusion limits from the one-lepton analysis on the MSUGRA/CMSSM scenario with tan(beta) = 40, A0 = 0 and MU > 0.
Expected 95 PCT CL exclusion limits from the one-lepton analysis on the MSUGRA/CMSSM scenario with tan(beta) = 40, A0 = 0 and MU > 0.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status Email Forum Twitter GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.