Exclusive electroproduction of Phi mesons at 4.2-GeV.

The CLAS collaboration Lukashin, K. ; Smith, E.S. ; Adams, G.S. ; et al.
Phys.Rev.C 64 (2001) 059901, 2001.
Inspire Record 552246 DOI 10.17182/hepdata.38589

We studied the exclusive reaction e p --> e' p' phi using the phi --> K^+ K^- decay mode. The data were collected using a 4.2 GeV incident electron beam and the CLAS detector at Jefferson Lab. Our experiment covers the range in Q^2 from 0.7 to 2.2 GeV^2, and W from 2.0 to 2.6 GeV. Taken together with all previous data, we find a consistent picture of phi production on the proton. Our measurement shows the expected decrease of the t-slope with the vector meson formation time c Delta tau below 2 fm. At = 0.6 fm, we measure b_phi = 2.27 +- 0.42 GeV^-2. The cross section dependence on W as W^{0.2+-0.1} at Q^2 = 1.3 GeV^2 was determined by comparison with phi production at HERA after correcting for threshold effects. This is the same dependence as observed in photoproduction.

3 data tables

Slope of the DSIG/DT distribution in different Q**2 regions.

Cross section as a function of Q**2 and W.

The differential cross section for exclusive PHI electroproduction off the photon, (TP=T-TMIN).


Exclusive Vector Meson Production in Muon - Proton Scattering

del Papa, C. ; Dorfan, David E. ; Flatte, Stanley M. ; et al.
Phys.Rev.D 19 (1979) 1303, 1979.
Inspire Record 130570 DOI 10.17182/hepdata.24312

From a muon-proton scattering experiment with a streamer chamber at the Stanford Linear Accelerator we present results in the ranges 0.3<Q2<4.7 GeV2 and 1.7<W<4.7 GeV for the reactions μ+p→μpV where V is a vector meson (ρ0, ω, or φ). It is shown that in ρ production the skewing parameter and the longitudinal-transverse ratio change significantly as Q2 increases above 1 GeV2. The cross section for ρ0 production as a function of Q2 falls below the vector-meson-dominance prediction. The ratio of the cross section for exclusive vector-meson production to the total cross section falls by a factor of 10 between photoproduction and a Q2 of 2 GeV2, yet the ratio of ω to ρ production remains constant at the photoproduction value out to Q2>2 GeV2.

4 data tables

THE ABSOLUTE TOTAL CROSS SECTION IS FROM A FIT TO THE MIT-SLAC ELECTRON SCATTERING DATA BY W. ATWOOD AND S. STEIN.

No description provided.

FOR 0.6 < M(PI+ PI-) < 0.9 GEV, USING THE METHOD OF MOMENTS.

More…

K0(L) p ---> K0(S) p SCATTERING FROM 1-GeV/c TO 10-GeV/c

Brandenburg, G.W. ; Johnson, William B. ; Leith, David W.G.S. ; et al.
Phys.Rev.D 9 (1974) 1939, 1974.
Inspire Record 81133 DOI 10.17182/hepdata.21986

The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.

22 data tables

No description provided.

No description provided.

No description provided.

More…