The process $e^{+}e^{-}\to \eta^{\prime} J/\psi$ is observed for the first time with a statistical significance of $8.6\sigma$ at center-of-mass energy $\sqrt{s} = 4.226$ GeV and $7.3\sigma$ at $\sqrt{s} = 4.258$ GeV using data samples collected with the BESIII detector. The Born cross sections are measured to be $(3.7 \pm 0.7 \pm 0.3)$ and $(3.9 \pm 0.8 \pm 0.3)$ pb at $\sqrt{s} = 4.226$ and $4.258$ GeV, respectively, where the first errors are statistical and the second systematic. Upper limits at the 90% confidence level of the Born cross sections are also reported at other 12 energy points.
Summary of the values used to calculate the Born cross section of $e^{+}e^{-}\to\eta^{\prime} J/\psi$. The upper limits are at the $90\%$ C.L.
Based on data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies $\sqrt{s} >$ 4.4 GeV, the processes $e^+e^- \rightarrow \omega \chi_{c1,2}$ are observed for the first time. With an integrated luminosity of $1074 pb^{-1}$ near $\sqrt{s} =$ 4.42 GeV, a significant $\omega \chi_{c2}$ signal is found, and the cross section is measured to be $(20.9 \pm 3.2 \pm 2.5)\pb$. With $567 pb^{-1}$ near $\sqrt{s} =$ 4.6 GeV, a clear $\omega \chi_{c1}$ signal is seen, and the cross section is measured to be $(9.5 \pm 2.1 \pm 1.3) \pb$, while evidence is found for an $\omega \chi_{c2}$ signal. The first errors are statistical and the second are systematic. Due to low luminosity or low cross section at other energies, no significant signals are observed. In the $\omega \chi_{c2}$ cross section, an enhancement is seen around $\sqrt{s} =$ 4.42 GeV. Fitting the cross section with a coherent sum of the $\psi(4415)$ Breit-Wigner function and a phase space term, the branching fraction $\mathcal{B}(\psi(4415)\to\omega\chi_{c2})$ is obtained to be of the order of $10^{-3}$.
Results on $e^+e^-\to \omega \chi_{c0}$. Shown in the table are the channels, the center-of-mass energy, the integrated luminosity $\mathcal{L}$, product of radiative correction factor, vacuum polarization factor, branching fraction and efficiency, $\mathcal{D}=(1+\delta)\frac{1}{|1-\Pi|^{2}}(\epsilon_{\pi}\mathcal{B}(\chi_{c0}\to\pi^+\pi^-)+\epsilon_{K}\mathcal{B}(\chi_{c0}\to K^+K^-))\mathcal{B}(\omega\to\pi^+\pi^{-}\pi^{0})\mathcal{B}(\pi^{0}\to\gamma\gamma)$ for $\omega\chi_{c0}$, number of observed events $N^{\rm {obs}}$, number of estimated background events $N^{\rm bkg}$, number of signal events $N^{\rm sig}$ determined as described in the text, Born cross section $\sigma^{\rm B}$(or upper limit at 90$\%$ C.L.) at each energy point.
Results on $e^+e^-\to \omega \chi_{c1}$. Shown in the table are the channels, the center-of-mass energy, the integrated luminosity $\mathcal{L}$, product of radiative correction factor, vacuum polarization factor, branching fraction and efficiency, $\mathcal{D}=(1 + \delta) \frac{1}{|1-\Pi|^{2}} (\epsilon_{e}\mathcal{B}_{e} + \epsilon_{\mu}\mathcal{B}_{\mu}) \mathcal{B}_{1}$ for $\omega\chi_{c1}$, number of observed events $N^{\rm {obs}}$, number of estimated background events $N^{\rm bkg}$, number of signal events $N^{\rm sig}$ determined as described in the text, Born cross section $\sigma^{\rm B}$(or upper limit at 90$\%$ C.L.) at each energy point. $N^{\rm sig}$ for $\omega\chi_{c1}$ at $\sqrt{s}$ = 4.416 and 4.599 GeV is taken from the fit. Dash means that the result is not applicable.
Results on $e^+e^-\to \omega \chi_{c2}$. Shown in the table are the channels, the center-of-mass energy, the integrated luminosity $\mathcal{L}$, product of radiative correction factor, vacuum polarization factor, branching fraction and efficiency, $\mathcal{D}=(1 + \delta) \frac{1}{|1-\Pi|^{2}} (\epsilon_{e}\mathcal{B}_{e} + \epsilon_{\mu}\mathcal{B}_{\mu}) \mathcal{B}_{1}$ for $\omega\chi_{c2}$, number of observed events $N^{\rm {obs}}$, number of estimated background events $N^{\rm bkg}$, number of signal events $N^{\rm sig}$ determined as described in the text, Born cross section $\sigma^{\rm B}$(or upper limit at 90$\%$ C.L.) at each energy point. $N^{\rm sig}$ for $\omega\chi_{c2}$ at $\sqrt{s}$ = 4.416 and 4.599 GeV is taken from the fit. Dash means that the result is not applicable.
Using data samples collected at center of mass energies of $\sqrt{s}$ = 4.009, 4.226, 4.257, 4.358, 4.416 and 4.599 GeV with the BESIII detector operating at the BEPCII storage ring, we search for the isospin violating decay $Y(4260)\rightarrow J/\psi \eta \pi^{0}$. No signal is observed, and upper limits on the cross section $\sigma(e^{+}e^{-}\rightarrow J/\psi \eta \pi^{0})$ at the 90\% confidence level are determined to be 3.6, 1.7, 2.4, 1.4, 0.9 and 1.9 pb, respectively.
Results on $e^{+}e^{-}\rightarrow J/\psi\eta\pi^{0}$. Listed in the table are the integrated luminosity $\cal{L}$, radiative correction factor (1+$\delta^{r}$) taken from QED calculation assuming the $Y(4260)$ cross section follows a Breit$-$Wigner line shape, vacuum polarization factor (1+$\delta^{v}$), average efficiency ($\epsilon^{ee}{\cal B}^{ee}$ + $\epsilon^{\mu\mu}{\cal B}^{\mu\mu}$), number of observed events $N^\text{obs}$, number of estimated background events $N^\text{bkg}$, the efficiency corrected upper limits on the number of signal events $N^\text{up}$, and upper limits on the Born cross section $\sigma^\text{Born}_\text{UL}$ (at the 90 $\%$ C.L.) at each energy point.
Using data samples collected with the BESIII detector operating at the BEPCII collider at center-of-mass energies from 3.810 to 4.600 GeV, we perform a study of $e^{+}e^{-} \to \eta J/\psi$ and $\pi^0 J/\psi$. Statistically significant signals of $e^{+}e^{-} \to \eta J/\psi$ are observed at $\sqrt{s}$ = 4.190, 4.210, 4.220, 4.230, 4.245, 4.260, 4.360 and 4.420 GeV, while no signals of $e^{+}e^{-} \to \pi^{0} J/\psi$ are observed. The measured energy-dependent Born cross section for $e^{+}e^{-} \to \eta J/\psi$ shows an enhancement around 4.2~GeV. The measurement is compatible with an earlier measurement by Belle, but with a significantly improved precision.
Results on $e^{+}e^{-}\to\eta J/\psi$ in data samples in which a signal is observed with a statistical significance larger than $5\sigma$. The table shows the CM energy $\sqrt{s}$, integrated luminosity $\mathcal{L}_\mathrm{int}$, number of observed $\eta$ events $N^\mathrm{obs}_{\eta}(\mu^{+}\mu^{-})$/$N^\mathrm{obs}_{\eta}(e^{+}e^{-})$ from the fit, efficiency $\epsilon_{\mu}/\epsilon_{e}$, radiative correction factor $(1+\delta^{r})$, vacuum polarization factor $(1+\delta^{v})$, Born cross section $\sigma^{B}(\mu^{+}\mu^{-})$/$\sigma^{B}(e^{+}e^{-})$ and combined Born cross section $\sigma^{B}_\mathrm{Com}$. The first uncertainties are statistical and the second systematic.
Upper limits of $e^{+}e^{-} \to \eta J/\psi$ using the $\mu^{+}\mu^{-}$ mode. The table shows the CM energy $\sqrt{s}$, integrated luminosity $\mathcal{L}_\mathrm{int}$, number of observed $\eta$ events $N^\mathrm{sg}_{\eta}$, number of background from $\eta$ sideband $N^\mathrm{sb}_{\eta}$, and from $J/\psi$ sideband $N^\mathrm{sb}_{J/\psi}$, efficiency $\epsilon$, upper limit of signal number with the consideration of selection efficiency $N^\mathrm{up}_{\eta}/\epsilon$ (at the $90\%$ C.L.), radiative correction factor $(1+\delta^{r})$, vacuum polarization factor $(1+\delta^{v})$, Born cross section $\sigma^{B}$ and upper limit on the Born cross sections $\sigma^{B}_\mathrm{up}$ (at the $90\%$ C.L.). The first uncertainties are statistical and the second systematic.
Upper limits of $e^{+}e^{-} \to \pi^{0} J/\psi$. The table shows the number of observed events in the $\pi^{0}$ signal region $N^\mathrm{sg}$, number of events in $\pi^{0}$ sideband $N^\mathrm{sb}_{\pi^{0}}$, and in $J/\psi$ sideband $N^\mathrm{sb}_{J/\psi}$, efficiency $\epsilon$, the upper limit of signal events with the consideration of the selection efficiency $N^\mathrm{up}(\mu^{+}\mu^{-})/\epsilon$ (at the $90\%$ C.L.) and the upper limit of Born cross sections $\sigma^{B}_\mathrm{up}$ (at the $90\%$ C.L.).