Tests of the standard model and constraints on new physics from measurements of fermion pair production at 130-GeV to 172-GeV at LEP

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 2 (1998) 441-472, 1998.
Inspire Record 447186 DOI 10.17182/hepdata.47404

Production of events with hadronic and leptonic final states has been measured in e^+e^- collisions at centre-of-mass energies of 130-172 GeV, using the OPAL detector at LEP. Cross-sections and leptonic forward-backward asymmetries are presented, both including and excluding the dominant production of radiative Z \gamma events, and compared to Standard Model expectations. The ratio R_b of the cross-section for bb(bar) production to the hadronic cross-section has been measured. In a model-independent fit to the Z lineshape, the data have been used to obtain an improved precision on the measurement of \gamma-Z interference. The energy dependence of \alpha_em has been investigated. The measurements have also been used to obtain limits on extensions of the Standard Model described by effective four-fermion contact interactions, to search for t-channel contributions from new massive particles and to place limits on chargino pair production with subsequent decay of the chargino into a light gluino and a quark pair.

15 data tables

SIG(C=MEAS) and SIG(C=CORR) stand for measured values without (C=MEAS) and with (C=CORR) correction for interference between initial- and final-state radiation.

The angular distribution of the thrust axis. Errors include statistical and systematic effects combined, with the former dominant.

The measured values include the effect of interference between initial- andfinal-state radiation.

More…

Measurement of f(c --> D*+ X), f(b --> D*+ X) and Gamma(c anti-c)/Gamma(had) using D*+- mesons.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 1 (1998) 439-459, 1998.
Inspire Record 447145 DOI 10.17182/hepdata.47409

The production rates of D^*+/- mesons in charm and bottom events at centre-of-mass energies of about 91 GeV and the partial width of primary cc(bar) pairs in hadronic Z^0 decays have been measured at LEP using almost 4.4 million hadronic Z^0 decays collected with the OPAL detector between 1990 and 1995. Using a combination of several charm quark tagging methods based on fully and partially reconstructed D^*+/- mesons, and a bottom tag based on identified muons and electrons, the hadronisation fractions of charm and bottom quarks into D^*+/- mesons have been found to be: f(b -> D^*+ X) = 0.173 +/- 0.016 +/- 0.012 and f(c -> D^*+ X) = 0.222 +/- 0.014 +/- 0.014 The fraction of cc(bar) events in hadronic Z^0 decays, Gamma_cc(bar)/Gamma_had = Gamma(Z^0 -> cc(bar))/Gamma(Z^0 -> hadrons), is determined to be Gamma_cc(bar)/Gamma_had = 0.180 +/- 0.011 +/- 0.012 +/- 0.006 In all cases the first error is statistical, and the second one systematic. The last error quoted for Gamma_cc(bar)/Gamma_had is due to external branching ratios.

3 data tables

No description provided.

No description provided.

The second syst. errors results due to extranal branching ratios. Charge conjugated states are implied. FD is considered as a quark fragmentation fraction. Sqrt(s(E+ E-)) = 91.2 GeV.


Measurement of the photon structure function F2(gamma) at low x.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 412 (1997) 225-234, 1997.
Inspire Record 447187 DOI 10.17182/hepdata.49560

Deep inelastic electron-photon scattering is studied using e+e- data collected by the OPAL detector at centre-of-mass energies sqrt{s_ee} ~ M_{Z^0}. The photon structure function F_2^gamma(x,Q^2) is explored in a Q^2 range of 1.1 to 6.6 GeV/c^2 at lower x values than ever before. To probe this kinematic region events are selected with a beam electron scattered into one of the OPAL luminosity calorimeters at scattering angles between 27 and 55 mrad. A measurement is presented of the photon structure function F_2^gamma(x,Q^2) at <Q^2> = 1.86 GeV^2 and 3.76 GeV^2 in five logarithmic x bins from 0.0025 to 0.2.

2 data tables

Measurement of the hadron photon structure function. Systematic errors do not contain any effects caused by the four momentum of the quasi-real photon being non zero.

Measurement of the hadron photon structure function. Systematic errors do not contain any effects caused by the four momentum of the quasi-real photon being non zero.


QCD studies with e+ e- annihilation data at 161-GeV.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 75 (1997) 193-207, 1997.
Inspire Record 440721 DOI 10.17182/hepdata.47487

We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.

26 data tables

Determination of alpha_s.

Multiplicity and higher moments.

Thrust distribution.

More…

Study of Phi(1020), D*+- and B* spin alignment in hadronic Z0 decays.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 74 (1997) 437-449, 1997.
Inspire Record 440103 DOI 10.17182/hepdata.47515

Measurements of helicity density matrix elements have been made for the φ(1020), D*± and B* vector mesons in multihadronic Z0 decays in the OPAL experiment at LEP. Results for inclusive φ produced with high energy show evidence for production preferentially in the helicity zero state, with ρ00 = 0.54 ± 0.08, compared to the value of 1/3 expected for no spin alignment. The corresponding element for the D*± has a value of 0.40 ± 0.02, also suggesting a deviation from 1/3. The B* result, with ρ00 = 0.36 ± 0.09, is consistent with no spin alignment. Off-diagonal elements have been measured for the f and D* mesons; for the D* the element Re ρ1−1 is non-zero, indicating non-independent fragmentation of the primary quarks.

4 data tables

Helicity density matrices elements. Helicity beam frame is used.

Charge conjugated states are understood.

Helicity density matrices elements. Charge conjugated states are understood.

More…

Measurement of the triple gauge boson coupling alpha (w phi) from W+ W- production in e+ e- collisions at s**(1/2) = 161-GeV

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 397 (1997) 147-157, 1997.
Inspire Record 440102 DOI 10.17182/hepdata.47516

This letter describes a measurement of one of the anomalous triple gauge boson couplings using the first data recorded by the OPAL detector at LEP2. A total of 28 W-pair candidates have been selected for an integrated luminosity of 9.89±0.06 pb −1 recorded at a centre-of-mass energy of 161 GeV. We use these data to place constraints upon the coupling parameter α W φ . We analyse the predicted variation of the total cross-section for all observed channels and the distribution of kinematic variables in the semileptonic decay channels. We measure α W φ to be −0.61 −0.61 0.73 ±0.35, which is consistent with the Standard Model expectation of zero.

1 data table

ALPHA-W-PHI is the triple gauge boson couplings (TGC). For definition see 'Physics at LEP2', Ed. G. Altarelli, CERN 96-01 (1996), vol. 1.