Version 3
Search for W$\gamma$ resonances in proton-proton collisions at $\sqrt{s} =$ 13 TeV using hadronic decays of Lorentz-boosted W bosons

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 826 (2022) 136888, 2022.
Inspire Record 1869502 DOI 10.17182/hepdata.106162

A search for W$\gamma$ resonances in the mass range between 0.7 and 6.0 TeV is presented. The W boson is reconstructed via its hadronic decays, with the final-state products forming a single large-radius jet, owing to a high Lorentz boost of the W boson. The search is based on proton-proton collision data at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$, collected with the CMS detector at the LHC in 2016-2018. The W$\gamma$ mass spectrum is parameterized with a smoothly falling background function and examined for the presence of resonance-like signals. No significant excess above the predicted background is observed. Model-specific upper limits at 95% confidence level on the product of the cross section and branching fraction to the W$\gamma$ channel are set. Limits for narrow resonances and for resonances with an intrinsic width equal to 5% of their mass, for spin-0 and spin-1 hypotheses, range between 0.17 fb at 6.0 TeV and 55 fb at 0.7 TeV. These are the most restrictive limits to date on the existence of such resonances over a large range of probed masses. In specific heavy scalar (vector) triplet benchmark models, narrow resonances with masses between 0.75 (1.15) and 1.40 (1.36) TeV are excluded for a range of model parameters. Model-independent limits on the product of the cross section, signal acceptance, and branching fraction to the W$\gamma$ channel are set for minimum W$\gamma$ mass thresholds between 1.5 and 8.0 TeV.

10 data tables

Fitted 4th order polynomials to the signal acceptance for narrow and broad, scalar and vector Wgamma resonances. This quantity is defined as the ratio between the number of signal events falling within the analysis acceptance at the generator level to the number of signal events generated. The fitting function is $ A = p0 + p1*m + p2*m^2 + p3*m^3 + p4*m^4$, where $ A$ is the acceptance and m is the signal mass.

Fitted 4th order polynomials to the product of the signal efficiency and acceptance for narrow and broad, scalar and vector Wgamma resonances. This quantity is defined as the ratio between the number of signal events passing full analysis cuts to the number of signal events generated. The fitting function is $ A \epsilon = p0 + p1*m + p2*m^2 + p3*m^3 + p4*m^4$, where $ A \epsilon$ is the product of the signal efficiency and acceptance, m is the signal mass.

W tagging efficiency, averaged for different spin and width hypotheses. The Standard deviation shown below is the standard deviation between the W tagging efficiencies for different spin and width hypotheses.

More…

Search for new physics in high-mass diphoton events from proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-22-024, 2024.
Inspire Record 2787227 DOI 10.17182/hepdata.150677

Results are presented from a search for new physics in high-mass diphoton events from proton-proton collisions at $\sqrt{s}$ = 13 TeV. The data set was collected in 2016-2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. Events with a diphoton invariant mass greater than 500\GeV are considered. Two different techniques are used to predict the standard model backgrounds: parametric fits to the smoothly-falling background and a first-principles calculation of the standard model diphoton spectrum at next-to-next-to-leading order in perturbative quantum chromodynamics calculations. The first technique is sensitive to resonant excesses while the second technique can identify broad differences in the invariant mass shape. The data are used to constrain the production of heavy Higgs bosons, Randall-Sundrum gravitons, the large extra dimensions model of Arkani-Hamed, Dimopoulos, and Dvali (ADD), and the continuum clockwork mechanism. No statistically significant excess is observed. The present results are the strongest limits to date on ADD extra dimensions and RS gravitons with a coupling parameter greater than 0.1.

16 data tables

The product of the event selection efficiency (e) and the detector acceptance (A) is shown as a function of the signal resonance mass mX for the narrow signal width hypothesis ($\Gamma_{X}/m_{X} = 1.4 x 10^{4}$ for J = 0 and $~k = 0.01$ for J = 2). The total (black), EBEB (red), and EBEE (blue) curves are shown for spin (J) hypotheses J = 0 (solid) and J = 2 (dashed).

Figure 2: Observed diphoton invariant mass spectra for the EBEB category for the full Run 2 data set are shown. Also shown are the results of a likelihood fit to the background-only hypothesis. The black, red, green and blue lines indicate the result of the fit functions f1, f2, f3, and f4, respectively. The lower panels show the difference between the data and f1 fit, divided by the statistical uncertainty in the data points. dijet f1 = 0.13116092* pow(x,5.7466302555276645-0.7807885712668643*log(x)), expow1 f2 = 7.3165496e+10*exp(-0.0016273075*x)*pow(x, -1*1.8233539*1.8233539), invpow1 f3 = 8760.6423*(pow(1+x*0.0022831415,-1.*2.7013689*2.7013689)), invpowlin1 f4 = 2124447.3*(pow(1+0.029456453*x,-3.8645171-0.00027603566*x)).

Figure 2: Observed diphoton invariant mass spectra for the EBEE category for the full Run 2 data set are shown. Also shown are the results of a likelihood fit to the background-only hypothesis. The black, red, green and blue lines indicate the result of the fit functions f1, f2, f3, and f4, respectively. The lower panels show the difference between the data and f1 fit, divided by the statistical uncertainty in the data points. dijet f1 = 1.81866e-22*pow(x,19.5547-1.7634*log(x)), expow1 f2 = 69750*exp(-0.00368224*x)*pow(x, -1.*0.975269*0.975269, invpow1 f3 = 508.838*pow(1+x*0.000294278,-1.*4.5514*4.5514), invpowlin1 f4 = 470.588*pow(1+x* 5.07338e-05,-114.601+0.00817169*x)

More…

Measurements of long-range two-particle correlation over a wide pseudorapidity range in p$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.0$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 01 (2024) 199, 2024.
Inspire Record 2693248 DOI 10.17182/hepdata.151801

Correlations in azimuthal angle extending over a long range in pseudorapidity between particles, usually called the "ridge" phenomenon, were discovered in heavy-ion collisions, and later found in pp and p$-$Pb collisions. In large systems, they are thought to arise from the expansion (collective flow) of the produced particles. Extending these measurements over a wider range in pseudorapidity and final-state particle multiplicity is important to understand better the origin of these long-range correlations in small-collision systems. In this Letter, measurements of the long-range correlations in p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV are extended to a pseudorapidity gap of $\Delta\eta \sim 8$ between particles using the ALICE, forward multiplicity detectors. After suppressing non-flow correlations, e.g., from jet and resonance decays, the ridge structure is observed to persist up to a very large gap of $\Delta\eta \sim 8$ for the first time in p$-$Pb collisions. This shows that the collective flow-like correlations extend over an extensive pseudorapidity range also in small-collision systems such as p$-$Pb collisions. The pseudorapidity dependence of the second-order anisotropic flow coefficient, $v_{2}({\eta})$, is extracted from the long-range correlations. The $v_{2}(\eta)$ results are presented for a wide pseudorapidity range of $-3.1 < \eta < 4.8$ in various centrality classes in p$-$Pb collisions. To gain a comprehensive understanding of the source of anisotropic flow in small-collision systems, the $v_{2}(\eta)$ measurements are compared to hydrodynamic and transport model calculations. The comparison suggests that the final-state interactions play a dominant role in developing the anisotropic flow in small-collision systems.

6 data tables

$v_{2}\{2\}$ at $p_{\rm T} > 0$ GeV/$c$ as a function of pseudorapidity in different centrality classes using the template fit method

$v_{2}$ at $p_{\rm T} > 0$ GeV/$c$ as a function of charged particle density for five different pseudorapidity regions with the peripheral subtraction at $-3.1<\eta<-2.5$

$v_{2}$ at $p_{\rm T} > 0$ GeV/$c$ as a function of charged particle density for five different pseudorapidity regions with the peripheral subtraction at $-0.8<\eta<0$

More…

Inclusive and differential cross-section measurements of $t\bar{t}Z$ production in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector, including EFT and spin-correlation interpretations

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2023-252, 2023.
Inspire Record 2744513 DOI 10.17182/hepdata.146693

Measurements of both the inclusive and differential production cross sections of a top-quark-top-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. Final states with two, three or four isolated leptons (electrons or muons) are targeted. The measurements use the data recorded by the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider during the years 2015-2018, corresponding to an integrated luminosity of $140$ fb$^{-1}$. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z}= 0.86 \pm 0.04~\mathrm{(stat.)} \pm 0.04~\mathrm{(syst.)}~$pb and found to be in agreement with the most advanced Standard Model predictions. The differential measurements are presented as a function of a number of observables that probe the kinematics of the $t\bar{t}Z$ system. Both the absolute and normalised differential cross-section measurements are performed at particle level and parton level for specific fiducial volumes, and are compared with NLO+NNLL theoretical predictions. The results are interpreted in the framework of Standard Model effective field theory and used to set limits on a large number of dimension-6 operators involving the top quark. The first measurement of spin correlations in $t\bar{t}Z$ events is presented: the results are in agreement with the Standard Model expectations, and the null hypothesis of no spin correlations is disfavoured with a significance of $1.8$ standard deviations.

385 data tables

All the entries of this HEP data record are listed. Figure and Table numbers are the same as in the paper.

Definition of the dilepton signal regions.

Definition of the trilepton signal regions.

More…

Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at $\sqrt{s}$ = 13 TeV and in p$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 03 (2024) 092, 2024.
Inspire Record 2692432 DOI 10.17182/hepdata.151802

Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at $\sqrt{s}=13$ TeV and p$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV. The correlation functions are measured as a function of relative azimuthal angle $\Delta\varphi$ and pseudorapidity separation $\Delta\eta$ for pairs of primary charged particles within the pseudorapidity interval $|\eta| < 0.9$ and the transverse-momentum interval $1 < p_{\rm T} < 4$ GeV/$c$. Flow coefficients are extracted for the long-range correlations ($1.6 < |\Delta\eta| <1.8$) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events.

10 data tables

High and low multiplicity long-range delta phi correlations

Jet fragmentation yields of near and away side as a function of multiplicity class and and the ratio of them, please see the definition of x-axis

The second and third harmonic coefficients as a function of transverse momentum in pp and p--Pb collisions.

More…

Search for jet quenching effects in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV via di-jet acoplanarity

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2023-180, 2023.
Inspire Record 2694579 DOI 10.17182/hepdata.151783

The ALICE Collaboration reports a search for jet quenching effects in high-multiplicity (HM) proton$-$proton collisions at $\sqrt{s}$ = 13 TeV, using the semi-inclusive azimuthal-difference distribution $\Delta\varphi$ of charged-particle jets recoiling from a high transverse momentum (high-$p_{\mathrm{T,trig}}$) trigger hadron. Jet quenching may broaden the $\Delta\varphi$ distribution measured in HM events compared to that in minimum bias (MB) events. The measurement employs a $p_{\mathrm{T,trig}}$-differential observable for data-driven suppression of the contribution of multiple partonic interactions, which is the dominant background. While azimuthal broadening is indeed observed in HM compared to MB events, similar broadening for HM events is observed for simulations based on the PYTHIA 8 Monte Carlo generator, which does not incorporate jet quenching. We elucidate the origin of the broadening by comparing biases induced by HM selection in the data and simulations, and discuss its implications for the study of jet quenching in small collision systems.

8 data tables

Probability distribution of $\mathrm{V0M}/\langle \mathrm{V0M} \rangle$ in MB pp collisions measured at $\sqrt{s}=13$ TeV.

Fully-corrected $\Delta_{\mathrm{recoil}} (p_{\mathrm{T, jet}}^{\mathrm{ch}})$ distributions measured in MB and HM-selected events in pp collisions at $\sqrt{s}= 13$ TeV.

Fully-corrected $\Delta_{\mathrm{recoil}} (\Delta\phi)$ distributions for $p_{\mathrm{T, jet}}^{\mathrm{ch}} \in (20, 40)$ GeV/$c$ measured in MB and HM-selected events in pp collisions at $\sqrt{s}= 13$ TeV.

More…

Measurement of the $t\bar{t}$ cross section and its ratio to the $Z$ production cross section using $pp$ collisions at $\sqrt{s} = 13.6$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 848 (2024) 138376, 2024.
Inspire Record 2689657 DOI 10.17182/hepdata.143515

The inclusive top-quark-pair production cross section $\sigma_{t\bar{t}}$ and its ratio to the $Z$-boson production cross section have been measured in proton--proton collisions at $\sqrt{s} = 13.6$ TeV, using 29 fb${}^{-1}$ of data collected in 2022 with the ATLAS experiment at the Large Hadron Collider. Using events with an opposite-charge electron-muon pair and $b$-tagged jets, and assuming Standard Model decays, the top-quark-pair production cross section is measured to be $\sigma_{t\bar{t}} = 850 \pm 3\mathrm{(stat.)}\pm 18\mathrm{(syst.)}\pm 20\mathrm{(lumi.)}$ pb. The ratio of the $t\bar{t}$ and the $Z$-boson production cross sections is also measured, where the $Z$-boson contribution is determined for inclusive $e^+e^-$ and $\mu^+\mu^-$ events in a fiducial phase space. The relative uncertainty on the ratio is reduced compared to the $t\bar{t}$ cross section, thanks to the cancellation of several systematic uncertainties. The result for the ratio, $R_{t\bar{t}/Z} = 1.145 \pm 0.003\mathrm{(stat.)}\pm 0.021\mathrm{(syst.)}\pm 0.002\mathrm{(lumi.)}$ is consistent with the Standard Model prediction using the PDF4LHC21 PDF set.

8 data tables

The fiducial phase-space definition for the $Z$-boson measurement. Born-level leptons are used.

The measured $t\bar{t}$ cross section and the ratio of the cross sections of $t\bar{t}$ and the $Z$-boson. Full phase-space is considered for $t\bar{t}$, while fiducial phase-space is considered for the $Z$-boson.

Table with pre-fit yields in the four regions used in the measurement

More…

Photoproduction of K$^{+}$K$^{-}$ pairs in ultra-peripheral collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2023-248, 2023.
Inspire Record 2724212 DOI 10.17182/hepdata.151670

K$^{+}$K$^{-}$ pairs may be produced in photonuclear collisions, either from the decays of photoproduced $\phi (1020)$ mesons, or directly as non-resonant K$^{+}$K$^{-}$ pairs. Measurements of K$^{+}$K$^{-}$ photoproduction probe the couplings between the $\phi (1020)$ and charged kaons with photons and nuclear targets. We present the first measurement of coherent photoproduction of K$^{+}$K$^{-}$ pairs on lead ions in ultra-peripheral collisions using the ALICE detector, including the first investigation of direct K$^{+}$K$^{-}$ production. There is significant K$^{+}$K$^{-}$ production at low transverse momentum, consistent with coherent photoproduction on lead targets. In the mass range $1.1 < M_{\rm{KK}} < 1.4$ GeV/$c^2$ above the $\phi (1020)$ resonance, for rapidity $|y_{\rm{KK}}|<0.8$ and $p_{\rm T,KK} < 0.1$ GeV/$c$, the measured coherent photoproduction cross section is $\mathrm{d}\sigma/\mathrm{d}y$ = 3.37 $\pm\ 0.61$ (stat.) $\pm\ 0.15 $ (syst.) mb. The centre-of-mass energy per nucleon of the photon-nucleus (Pb) system $W_{\gamma \mathrm{Pb, n}}$ ranges from 33 to 188 GeV, far higher than previous measurements on heavy-nucleus targets. The cross section is larger than expected for $\phi (1020)$ photoproduction alone. The mass spectrum is fit to a cocktail consisting of $\phi (1020)$ decays, direct K$^{+}$K$^{-}$ photoproduction, and interference between the two. The confidence regions for the amplitude and relative phase angle for direct K$^{+}$K$^{-}$ photoproduction are presented.

2 data tables

d$^2\sigma$/d$y$/d$p_T^2$ in bins of $p_{T,KK}^2$ for $K^+K^-$ photoproduction in ultra-peripheral Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV .

d$^2\sigma$/d$y$/d$p_T^2$ in bins of $M_{KK}$ for $K^+K^-$ photoproduction in ultra-peripheral Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV .


Measurements of chemical potentials in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2023-268, 2023.
Inspire Record 2725426 DOI 10.17182/hepdata.151650

This Letter presents the most precise measurement to date of the matter/antimatter imbalance at midrapidity in Pb-Pb collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV. Using the Statistical Hadronization framework, it is possible to obtain the value of the electric charge and baryon chemical potentials, $\mu_Q=-0.18\pm0.90$ MeV and $\mu_B=0.71\pm0.45$ MeV, with unprecedented precision. A centrality-differential study of the antiparticle-to-particle yield ratios of charged pions, protons, $\Omega$-baryons, and light (hyper)nuclei is performed. These results indicate that the system created in Pb-Pb collisions at the LHC is on average baryon-free and electrically neutral at midrapidity.

46 data tables

Antiparticle-to-particle yield ratio, 0-5% centrality

Antiparticle-to-particle yield ratio, 5-10% centrality

Antiparticle-to-particle yield ratio, 10-30% centrality

More…

Search for production of a single vector-like quark decaying to tH or tZ in the all-hadronic final state in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-B2G-19-001, 2024.
Inspire Record 2784426 DOI 10.17182/hepdata.144172

A search for electroweak production of a single vector-like T quark in association with a bottom (b) quark in the all-hadronic decay channel is presented. This search uses proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN LHC during 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$ The T quark is assumed to have charge 2/3 and decay to a top (t) quark and a Higgs (H) or Z boson. Event kinematics and the presence of jets containing b hadrons are used to reconstruct the hadronic decays of the t quark and H or Z boson. No significant deviation from the standard model prediction is observed in the data. The 95% confidence level upper limits on the product of the production cross section and branching fraction of a T quark produced in association with a b quark and decaying via tH or tZ range from 1260 to 68 fb for T quark masses of 600-1200 GeV.

57 data tables

Five-jet invariant mass distributions in the 2M1L region after the high-mass (green crosses) and low-mass (black circles) selections in 2018 dataset. The low-mass selection results in a mass distribution that is smoothly falling, unlike the high-mass selection. The high-mass selection is more efficient for signal T masses above 700 GeV.

Weights from b tagging efficiency ratios as functions of the five-jet invariant mass in 2018 data for the low-mass selection, connecting the 2M1L and 3M regions. The red line corresponds to the central value of the transfer function and the shaded area represents the 95% confidence level uncertainty band. For the low-mass analysis only signals with mass below 800GeV are tested, so primarily the lower part of the distribution contributes to the final result.

Weights from b tagging efficiency ratios as functions of the five-jet invariant mass in 2018 data for the low-mass selection, connecting the 3M and 3T regions. The red line corresponds to the central value of the transfer function and the shaded area represents the 95% confidence level uncertainty band. For the low-mass analysis only signals with mass below 800GeV are tested, so primarily the lower part of the distribution contributes to the final result.

More…