Measurements of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ Lifetimes and Yields in Au+Au Collisions in the High Baryon Density Region

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 128 (2022) 202301, 2022.
Inspire Record 1946124 DOI 10.17182/hepdata.114372

We report precision measurements of hypernuclei ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ lifetimes obtained from Au+Au collisions at \snn = 3.0 GeV and 7.2 GeV collected by the STAR experiment at RHIC, and the first measurement of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ mid-rapidity yields in Au+Au collisions at \snn = 3.0 GeV. ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$, being the two simplest bound states composed of hyperons and nucleons, are cornerstones in the field of hypernuclear physics. Their lifetimes are measured to be $221\pm15(\rm stat.)\pm19(\rm syst.)$ ps for ${}^3_\Lambda \rm{H}$ and $218\pm6(\rm stat.)\pm13(\rm syst.)$ ps for ${}^4_\Lambda \rm{H}$. The $p_T$-integrated yields of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ are presented in different centrality and rapidity intervals. It is observed that the shape of the rapidity distribution of ${}^4_\Lambda \rm{H}$ is different for 0--10% and 10--50% centrality collisions. Thermal model calculations, using the canonical ensemble for strangeness, describes the ${}^3_\Lambda \rm{H}$ yield well, while underestimating the ${}^4_\Lambda \rm{H}$ yield. Transport models, combining baryonic mean-field and coalescence (JAM) or utilizing dynamical cluster formation via baryonic interactions (PHQMD) for light nuclei and hypernuclei production, approximately describe the measured ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ yields. Our measurements provide means to precisely assess our understanding of the fundamental baryonic interactions with strange quarks, which can impact our understanding of more complicated systems involving hyperons, such as the interior of neutron stars or exotic hypernuclei.

17 data tables match query

The measured $^{3}_{\Lambda}$H and $^{4}_{\Lambda}$H lifetimes from STAR (2021)

B.R. times dN/dy of $^{3}_{\Lambda}$H vs y in 3 GeV 0-10% Au+Au collisions

B.R. times dN/dy of $^{4}_{\Lambda}$H vs y in 3 GeV 0-10% Au+Au collisions

More…

Version 2
Strange hadron production in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 7.7, 11.5, 19.6, 27, and 39 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 034909, 2020.
Inspire Record 1738953 DOI 10.17182/hepdata.94313

We present STAR measurements of strange hadron ($\mathrm{K}^{0}_{\mathrm S}$, $\Lambda$, $\overline{\Lambda}$, $\Xi^-$, $\overline{\Xi}^+$, $\Omega^-$, $\overline{\Omega}^+$, and $\phi$) production at mid-rapidity ($|y| < 0.5$) in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 7.7 - 39 GeV from the Beam Energy Scan Program at the Relativistic Heavy Ion Collider (RHIC). Transverse momentum spectra, averaged transverse mass, and the overall integrated yields of these strange hadrons are presented versus the centrality and collision energy. Antibaryon-to-baryon ratios ($\overline{\Lambda}$/$\Lambda$, $\overline{\Xi}^+$/$\Xi^-$, $\overline{\Omega}^+$/$\Omega^-$) are presented as well, and used to test a thermal statistical model and to extract the temperature normalized strangeness and baryon chemical potentials at hadronic freeze-out ($\mu_{B}/T_{\rm ch}$ and $\mu_{S}/T_{\rm ch}$) in central collisions. Strange baryon-to-pion ratios are compared to various model predictions in central collisions for all energies. The nuclear modification factors ($R_{\textrm{CP}}$) and antibaryon-to-meson ratios as a function of transverse momentum are presented for all collision energies. The $\mathrm{K}^{0}_{\mathrm S}$$R_{\textrm{CP}}$ shows no suppression for $p_{\rm T}$ up to 3.5 $\mathrm{GeV} / c$ at energies of 7.7 and 11.5 GeV. The $\overline{\Lambda}$/$\mathrm{K}^{0}_{\mathrm S}$ ratio also shows baryon-to-meson enhancement at intermediate $p_{\rm T}$ ($\approx$2.5 $\mathrm{GeV} / c$) in central collisions at energies above 19.6 GeV. Both observations suggest that there is likely a change of the underlying strange quark dynamics at collision energies below 19.6 GeV.

714 data tables match query

Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)

Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)

Data from STAR beam energy scan (Phase I) at RHIC, for mid-rapidity (|y|<0.5)

More…

$K^{*0}$ production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV from RHIC beam energy scan

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 034907, 2023.
Inspire Record 2642282 DOI 10.17182/hepdata.134956

We report the measurement of $K^{*0}$ meson at midrapidity ($|y|<$ 1.0) in Au+Au collisions at $\sqrt{s_{\rm NN}}$~=~7.7, 11.5, 14.5, 19.6, 27 and 39 GeV collected by the STAR experiment during the RHIC beam energy scan (BES) program. The transverse momentum spectra, yield, and average transverse momentum of $K^{*0}$ are presented as functions of collision centrality and beam energy. The $K^{*0}/K$ yield ratios are presented for different collision centrality intervals and beam energies. The $K^{*0}/K$ ratio in heavy-ion collisions are observed to be smaller than that in small system collisions (e+e and p+p). The $K^{*0}/K$ ratio follows a similar centrality dependence to that observed in previous RHIC and LHC measurements. The data favor the scenario of the dominance of hadronic re-scattering over regeneration for $K^{*0}$ production in the hadronic phase of the medium.

71 data tables match query

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 0-20%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 20-40%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 40-60%).

More…

Measurement of hyper triton lifetime in Au + Au collisions at the Relativistic Heavy-Ion Collider

The STAR collaboration Adamczyk, L. ; Adams, Joseph ; Adkins, Kevin ; et al.
Phys.Rev.C 97 (2018) 054909, 2018.
Inspire Record 1628155 DOI 10.17182/hepdata.102407

A precise measurement of the hypertriton lifetime is presented. In this letter, the mesonic decay modes $\mathrm{{^3_\Lambda}H \rightarrow ^3He + \pi^-}$ and $\mathrm{{^3_\Lambda}H \rightarrow d + p + \pi^-}$ are used to reconstruct the hypertriton from Au+Au collision data collected by the STAR collaboration at RHIC. A minimum $\chi^2$ estimation is used to determine the lifetime of $\tau = 142^{+24}_{-21}\,{\rm (stat.)} {\pm} 31\,{\rm (syst.)}$ ps. This lifetime is about 50\% shorter than the lifetime $\tau = 263\pm2$ ps of a free $\Lambda$, indicating strong hyperon-nucleon interaction in the hypernucleus system. The branching ratios of the mesonic decay channels are also determined to satisfy B.R.$_{(^3{\rm He}+\pi^-)}/$(B.R.$_{(^3{\rm He}+\pi^-)}+$B.R.$_{(d+p+\pi^-)})$ = $0.32\rm{\pm}0.05\,{\rm (stat.)}\pm 0.08\,{\rm (syst.)}$. Our ratio result favors the assignment $J(\mathrm{^{3}_{\Lambda}H})$ = $\frac{1}{2}$ over $J(\mathrm{^{3}_{\Lambda}H})$ = $\frac{3}{2}$. These measurements will help to constrain models of hyperon-baryon interactions.

0 data tables match query

Bulk Properties of the Medium Produced in Relativistic Heavy-Ion Collisions from the Beam Energy Scan Program

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 96 (2017) 044904, 2017.
Inspire Record 1510593 DOI 10.17182/hepdata.76977

We present measurements of bulk properties of the matter produced in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, and 39 GeV using identified hadrons ($\pi^\pm$, $K^\pm$, $p$ and $\bar{p}$) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity ($|y|<$0.1) results for multiplicity densities $dN/dy$, average transverse momenta $\langle p_T \rangle$ and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.

95 data tables match query

The average number of participating nucleons (⟨Npart⟩) for various collision centralities in Au+Au collisions at √sNN = 7.7–39 GeV.

Midrapidity (|y| < 0.1) transverse momentum spectra for (b) π- in Au+Au collisions at √sNN = 7.7 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.

Midrapidity (|y| < 0.1) transverse momentum spectra for (a) π+ in Au+Au collisions at √sNN = 7.7 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.

More…

Version 2
Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 704 (2011) 467-473, 2011.
Inspire Record 914546 DOI 10.17182/hepdata.102406

We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at $\sqrt{s_{NN}} = 200$ GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, $\eta/s$, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of $\eta/s$ that suggests that the produced medium has a small viscosity per unit entropy.

0 data tables match query

Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 054908, 2010.
Inspire Record 830676 DOI 10.17182/hepdata.98577

Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in non-central collisions. To study this effect, we investigate a three particle mixed harmonics azimuthal correlator which is a \P-even observable, but directly sensitive to the charge separation effect. We report measurements of this observable using the STAR detector in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$=200 and 62~GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators, and discuss in detail possible contributions from other effects that are not related to parity violation.

19 data tables match query

$\langle cos(\phi_{\alpha}+\phi_{\beta}−2\phi_{c})\rangle$ as a function of reference multiplicity for different charge combinations, before corrections for acceptance effects. In the legend the signs indicate the charge of particles $\alpha$, $\beta$, and c. The results shown are for Au+Au collisions at 200 GeV obtained in the Reversed Full Field.

$\langle cos(\phi_{\alpha}+\phi_{\beta}−2\phi_{c})\rangle$ as a function of reference multiplicity for different charge combinations, before corrections for acceptance effects. In the legend the signs indicate the charge of particles $\alpha$, $\beta$, and c. The results shown are for Au+Au collisions at 200 GeV obtained in the Full Field.

$\langle cos(\phi_{\alpha}+\phi_{\beta}−2\phi_{c})\rangle$ as a function of reference multiplicity for different charge combinations, after corrections for acceptance effects. In the legend the signs indicate the charge of particles $\alpha$, $\beta$, and c. The results shown are for Au+Au collisions at 200 GeV obtained in the Reversed Full Field.

More…

Measurements of $\phi$ meson production in relativistic heavy-ion collisions at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 064903, 2009.
Inspire Record 797805 DOI 10.17182/hepdata.99047

We present results for the measurement of $\phi$ meson production via its charged kaon decay channel $\phi \to K^+K^-$ in Au+Au collisions at $\sqrt{s_{_{NN}}}=62.4$, 130, 200 GeV, and in p+p and d+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV from the STAR experiment at RHIC. The mid-rapidity ($|y|<0.5$) $\phi$ meson spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the spectra from p+p, d+Au and peripheral Au+Au collisions show power-law tails at intermediate and high transverse momenta ($p_{T}$) and are described better by Levy distributions. The constant $\phi/K^-$ yield ratio vs. beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for $\phi$ production at RHIC. The $\Omega/\phi$ yield ratio as a function of $p_{T}$ is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\sim 4$ GeV/c, but disagrees at higher transverse momenta. The measured nuclear modification factor, $R_{dAu}$, for the $\phi$ meson increases above unity at intermediate $p_{T}$, similar to that for pions and protons, while $R_{AA}$ is suppressed due to jet quenching in central Au+Au collisions. Number of constituent quark scaling of both $R_{cp}$ and $v_{2}$ for the $\phi$ meson with respect to other hadrons in Au+Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV at intermediate $p_{T}$ is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate $p_{T}$ region at RHIC.

76 data tables match query

Background-subtracted invariant mass distributions at 0.4 < $p_{T}$ < 0.8 GeV/c in d + Au 200 GeV collisions (0–100%) with (solid points) and without (open points) the $\delta$-dipangle cut. The dashed curves show a Breit-Wigner (see the text for details) + linear background function fit to the case with the $\delta$-dip-angle cut.

Background-subtracted invariant mass distributions at 0.4 < $p_{T}$ < 0.8 GeV/c in d + Au 200 GeV collisions (0–100%) with (solid points) and without (open points) the $\delta$-dipangle cut. The dashed curves show a Breit-Wigner (see the text for details) + linear background function fit to the case with the $\delta$-dip-angle cut.

Upper panels: same-event (full points) and mixed-event (solid line) $K^{+}K^{-}$ invariant mass distributions at 0.6 < $p_{T}$ < 1.4 GeV/c in p + p 200 GeV collisions (a), 0.8 < $p_{T}$ < 1.2 GeV/c in Au + Au 62.4 GeV collisions (60–80%) (c), and 0.8 < $p_{T}$ < 1.2 GeV/c in Au + Au 200 GeV collisions (0–10%) (e). Lower panels: the corresponding $\phi$ meson mass peaks after subtracting the background. Dashed curves show a Breit-Wigner + linear background function fit in (b), (d). In (f), both linear and quadratic backgrounds are shown as dashed and dot-dashed lines, respectively.

More…

Azimuthal anisotropy and correlations at large transverse momenta in p + p and Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 93 (2004) 252301, 2004.
Inspire Record 654226 DOI 10.17182/hepdata.100594

Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at $\sqrt{s_{_{NN}}}$= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in $p+p$ at the same energy. Elliptic anisotropy, $v_2$, is found to reach its maximum at $p_t \sim 3$ GeV/c, then decrease slowly and remain significant up to $p_t\approx 7$ -- 10 GeV/c. Stronger suppression is found in the back-to-back high-$p_t$ particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of $v_2$ at intermediate $p_t$ is compared to simple models based on jet quenching.

5 data tables match query

Azimuthal correlations in Au+Au col- lisions (squares) as a function of centrality (peripheral to cen- tral from left to right) compared to minimum bias azimuthal correlations in p + p collisions (circles). Errors are statistical only.

$v_{2}$ of charged particles as a function of transverse momentum from the two-particle cumu- lant method (triangles) and four-particle cumulant method (stars). Open circles show the 2-particle correlation results after subtracting the correlations measured in p + p collisions. Only statistical errors are shown.

Upper panel, Azimuthal distributions of associated particles for trigger particles in-plane (squares) and out-of-plane (triangles) for Au+Au collisions at centrality 20-60%. Open symbols are reflections of solid symbols around $\Delta \phi$ = 0 and $\Delta \phi$ = $\pi$. Elliptic flow contribution is shown by dashed lines. Lower panel, Distributions after substracting elliptic flow, and the corresponding measurement in p + p collisions (histogram).

More…

Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 103 (2009) 251601, 2009.
Inspire Record 830686 DOI 10.17182/hepdata.98578

Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy ion collisions. These domains are predicted to lead to charge separation of quarks along the system's orbital momentum axis. We investigate a three particle azimuthal correlator which is a \P even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$=200 GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation.

3 data tables match query

$\langle cos(\phi_{\alpha}+\phi_{\beta}−2\Psi_{RP})\rangle$ in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV calculated using Eq. 2. The thick solid (Au+Au) and dashed (Cu+Cu) lines represent HIJING calculations of the contributions from 3-particle correlations. Shaded bands represent uncertainty from the measurement of $v_{2}$. Collision centrality increases from left to right.

Dependence of $\langle cos(\phi_{\alpha}+\phi_{\beta}−2\Psi_{RP})\rangle$ on $\frac{1}{2}(p_{t,\alpha}+p_{t,\beta})$ calculated using no upper cut on particles’ $p_{t}$. Shaded bands represent $v_{2}$ uncertainty.

$\langle cos(\phi_{\alpha} + \phi_{\beta} − 2\Psi_{RP})\rangle$ results from 200 GeV Au+Au collisions are compared to calculations with event generators HIJING (with and without an “elliptic flow afterburner”),UrQMD (connected by dashed lines), and MEVSIM. Thick lines represent HIJING reaction-plane-independent background.