Dielectron production in Au$+$Au collisions at $\sqrt{s_{NN}}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 014904, 2016.
Inspire Record 1393530 DOI 10.17182/hepdata.143067

We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair transverse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The \ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair \pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3\pm0.4({\rm stat})\pm0.4({\rm syst})\pm0.2^{\rm model}$ or to $1.7\pm0.3({\rm stat})\pm0.3({\rm syst})\pm0.2^{\rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {\sc pythia} or {\sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $\rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.

0 data tables match query

Transverse momentum dependence of meson suppression in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 82 (2010) 011902, 2010.
Inspire Record 856259 DOI 10.17182/hepdata.106472

New measurements by the PHENIX experiment at RHIC for eta production at midrapidity as a function of transverse momentum (p_T) and collision centrality in sqrt(s_NN) = 200 GeV Au+Au and p+p collisions are presented. They indicate nuclear modification factors (R_AA) that are similar both in magnitude and trend to those found in earlier pi^0 measurements. Linear fits to R_AA in the 5--20 GeV/c p_T region show that the slope is consistent with zero within two standard deviations at all centralities although a slow rise cannot be excluded. Having different statistical and systematic uncertainties the pi^0 and eta measurements are complementary at high p_T/ thus, along with the extended p_T range of these data they can provide additional constraints for theoretical modeling and the extraction of transport properties.

0 data tables match query

Elliptic and hexadecapole flow of charged hadrons in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 105 (2010) 062301, 2010.
Inspire Record 850211 DOI 10.17182/hepdata.143006

Differential measurements of the elliptic (v_2) and hexadecapole (v_4) Fourier flow coefficients are reported for charged hadrons as a function of transverse momentum (p_T) and collision centrality or the number of participant nucleons (N_part) for Au+Au collisions at sqrt(s_NN)=200 GeV. The v_{2,4} measurements at pseudorapidity |\eta|<=0.35 obtained with four separate reaction plane detectors positioned in the range 1.0<|\eta|<3.9 show good agreement, indicating the absence of significant \eta-dependent nonflow perturbations. Sizable values for v_4(p_T) are observed with a ratio v_4(p_T,N_part)/v_2^2(p_T,N_part)~0.8 for 50<N_part<200, which is compatible with the combined effects of a finite viscosity and initial eccentricity fluctuations. For N_part>200 this ratio increases up to 1.7 in the most central collisions.

0 data tables match query

Production of $\pi^0$ and $\eta$ mesons in Cu$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV

The PHENIX collaboration Aidala, C. ; Ajitanand, N.N. ; Akiba, Y. ; et al.
Phys.Rev.C 98 (2018) 054903, 2018.
Inspire Record 1672859 DOI 10.17182/hepdata.100192

Production of $\pi^0$ and $\eta$ mesons has been measured at midrapidity in Cu$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV. Measurements were performed in $\pi^0(\eta)\rightarrow\gamma\gamma$ decay channel in the 1(2)-20 GeV/$c$ transverse momentum range. A strong suppression is observed for $\pi^0$ and $\eta$ meson production at high transverse momentum in central Cu$+$Au collisions relative to the $p$$+$$p$ results scaled by the number of nucleon-nucleon collisions. In central collisions the suppression is similar to Au$+$Au with comparable nuclear overlap. The $\eta/\pi^0$ ratio measured as a function of transverse momentum is consistent with $m_T$-scaling parameterization down to $p_T=$2 GeV/$c$, its asymptotic value is constant and consistent with Au$+$Au and $p$$+$$p$ and does not show any significant dependence on collision centrality. Similar results were obtained in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions as well as in $e^+e^-$ collisions in a range of collision energies $\sqrt{s_{_{NN}}}=$3--1800 GeV. This suggests that the quark-gluon-plasma medium produced in Cu$+$Cu collisions either does not affect the jet fragmentation into light mesons or it affects the $\pi^0$ and $\eta$ the same way.

0 data tables match query

Polarization and cross section of midrapidity J/$\psi$ production in proton-proton collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 102 (2020) 072008, 2020.
Inspire Record 1798581 DOI 10.17182/hepdata.141538

The PHENIX experiment has measured the spin alignment for inclusive $J/\psi\rightarrow e^{+}e^{-}$ decays in $p$+$p$ collisions at $\sqrt{s}=510$ GeV at midrapidity. The angular distributions have been measured in three different polarization frames, and the three decay angular coefficients have been extracted in a full two-dimensional analysis. Previously, PHENIX saw large longitudinal net polarization at forward rapidity at the same collision energy. This analysis at midrapidity, complementary to the previous PHENIX results, sees no sizable polarization in the measured transverse momentum range of $0.0<p_T<10.0$ GeV/$c$. The results are consistent with a previous one-dimensional analysis at midrapidity at $\sqrt{s}=200$ GeV. The transverse-momentum-dependent cross section for midrapidity $J/\psi$ production has additionally been measured, and after comparison to world data we find a simple logarithmic dependence of the cross section on $\sqrt{s}$.

0 data tables match query

Measurements of $B \rightarrow J/\psi$ at forward rapidity in $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Aidala, C. ; Ajitanand, N.N. ; Akiba, Y. ; et al.
Phys.Rev.D 95 (2017) 092002, 2017.
Inspire Record 1507891 DOI 10.17182/hepdata.140435

We report the first measurement of the fraction of $J/\psi$ mesons coming from $B$-meson decay ($F_{B{\rightarrow}J/\psi}$) in $p$+$p$ collisions at $\sqrt{s}=$ 510 GeV. The measurement is performed using the forward silicon vertex detector and central vertex detector at PHENIX, which provide precise tracking and distance-of-closest-approach determinations, enabling the statistical separation of $J/\psi$ due to $B$-meson decays from prompt $J/\psi$. The measured value of $F_{B{\rightarrow}J/\psi}$ is 8.1\%$\pm$2.3\% (stat)$\pm$1.9\% (syst) for $J/\psi$ with transverse momenta $0<p_T<5$ GeV/$c$ and rapidity $1.2<|y|<2.2$. The measured fraction $F_{B{\rightarrow}J/\psi}$ at PHENIX is compared to values measured by other experiments at higher center of mass energies and to fixed-order-next-to-leading-logarithm and color-evaporation-model predictions. The $b\bar{b}$ cross section per unit rapidity ($d\sigma/dy(pp{\rightarrow}b\bar{b})$) extracted from the obtained $F_{B{\rightarrow}J/\psi}$ and the PHENIX inclusive $J/\psi$ cross section measured at 200 GeV scaled with color-evaporation-model calculations, at the mean $B$ hadron rapidity $y={\pm}1.7$ in 510 GeV $p$$+$$p$ collisions, is $3.63^{+1.92}_{-1.70}\mu$b, and it is consistent with the fixed-order-next-to-leading-logarithm calculations.

0 data tables match query

$J/\psi$ and $\psi(2S)$ production at forward rapidity in $p$+$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 101 (2020) 052006, 2020.
Inspire Record 1773662 DOI 10.17182/hepdata.140524

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive $J/\psi$ and cross-section ratio of $\psi(2S)$ to $J/\psi$ at forward rapidity in \pp collisions at \sqrts = 510 GeV via the dimuon decay channel. Comparison is made to inclusive $J/\psi$ cross sections measured at \sqrts = 200 GeV and 2.76--13 TeV. The result is also compared to leading-order nonrelativistic QCD calculations coupled to a color-glass-condensate description of the low-$x$ gluons in the proton at low transverse momentum ($p_T$) and to next-to-leading order nonrelativistic QCD calculations for the rest of the $p_T$ range. These calculations overestimate the data at low $p_T$. While consistent with the data within uncertainties above $\approx3$ GeV/$c$, the calculations are systematically below the data. The total cross section times the branching ratio is BR $d\sigma^{J/\psi}_{pp}/dy (1.2<|y|<2.2, 0<p_T<10~\mbox{GeV/$c$}) =$ 54.3 $\pm$ 0.5 (stat) $\pm$ 5.5 (syst) nb.

0 data tables match query

Azimuthally anisotropic emission of low-momentum direct photons in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 94 (2016) 064901, 2016.
Inspire Record 1394895 DOI 10.17182/hepdata.143116

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd and 3rd order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of $0.4<p_{T}<4.0$ GeV/$c$. At low $p_T$ the second-order coefficients, $v_2$, are similar to the ones observed in hadrons. Third order coefficients, $v_3$, are nonzero and almost independent of centrality. These new results on $v_2$ and $v_3$, combined with previously published results on yields, are compared to model calculations that provide yields and asymmetries in the same framework. Those models are challenged to explain simultaneously the observed large yield and large azimuthal anisotropies.

0 data tables match query

Production of $\pi^0$, $\eta$, and $K_S$ mesons in U$+$U collisions at $\sqrt{s_{_{NN}}}=192$ GeV

The PHENIX collaboration Acharya, U. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 102 (2020) 064905, 2020.
Inspire Record 1798526 DOI 10.17182/hepdata.132824

The PHENIX experiment at the Relativistic Heavy Ion Collider measured $\pi^0$ and $\eta$ mesons at midrapidity in U$+$U collisions at $\sqrt{s_{_{NN}}}=192$ GeV in a wide transverse momentum range. Measurements were performed in the $\pi^0(\eta)\rightarrow\gamma\gamma$ decay modes. A strong suppression of $\pi^0$ and $\eta$ meson production at high transverse momentum was observed in central U$+$U collisions relative to binary scaled $p$$+$$p$ results. Yields of $\pi^0$ and $\eta$ mesons measured in U$+$U collisions show similar suppression pattern to the ones measured in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV for similar numbers of participant nucleons. The $\eta$/$\pi^0$ ratios do not show dependence on centrality or transverse momentum, and are consistent with previously measured values in hadron-hadron, hadron-nucleus, nucleus-nucleus, and $e^+e^-$ collisions.

0 data tables match query

Angular decay coefficients of $J/\psi$ mesons at forward rapidity from $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 95 (2017) 092003, 2017.
Inspire Record 1505176 DOI 10.17182/hepdata.141939

We report the first measurement of the full angular distribution for inclusive $J/\psi\rightarrow\mu^{+}\mu^{-}$ decays in $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV. The measurements are made for $J/\psi$ transverse momentum $2<p_{T}<10$ GeV/$c$ and rapidity $1.2<y<2.2$ in the Helicity, Collins-Soper, and Gottfried-Jackson reference frames. In all frames the polar coefficient $\lambda_{\theta}$ is strongly negative at low $p_{T}$ and becomes close to zero at high $p_{T}$, while the azimuthal coefficient $\lambda_{\phi}$ is close to zero at low $p_{T}$, and becomes slightly negative at higher $p_{T}$. The frame-independent coefficient $\tilde{\lambda}$ is strongly negative at all $p_{T}$ in all frames. The data are compared to the theoretical predictions provided by nonrelativistic quantum chromodynamics models.

0 data tables match query