The STAR collaboration at RHIC presents measurements of \Jpsi$\to{e^+e^-}$ at mid-rapidity and high transverse momentum ($p_T>5$ GeV/$c$) in \pp and central \cucu collisions at \sNN = 200 GeV. The inclusive \Jpsi production cross section for \cucu collisions is found to be consistent at high $p_T$ with the binary collision-scaled cross section for \pp collisions, in contrast to previous measurements at lower $p_T$, where a suppression of \Jpsi production is observed relative to the expectation from binary scaling. Azimuthal correlations of $J/\psi$ with charged hadrons in \pp collisions provide an estimate of the contribution of $B$-meson decays to \Jpsi production of $13% \pm 5%$.
J/psi differential production cross section in sqrt(s).
J/psi transverse momentum distribution in sqrt(s).
J/psi transverse momentum distribution in sqrt(s).
The inclusive production cross sections of the strange vector mesons K*0, K*0bar, and phi have been measured in interactions of 920 GeV protons with C, Ti, and W targets with the HERA-B detector at the HERA storage ring. Differential cross sections as a function of rapidity and transverse momentum have been measured in the central rapidity region and for transverse momenta up to pT=3.5 GeV/c. The atomic number dependence is parametrised as sigma(pA) = sigma(pN)*A**alpha, where sigma(pN) is the proton-nucleon cross section. Within the phase space accessible, alpha(K*0) = 0.86+/-0.03, alpha(K*0bar) = 0.87+/-0.03, and alpha(phi) = 0.96+/-0.02. The total proton-nucleon cross sections, determined by extrapolating the differential measurements to full phase space, are sigma(pN->K*0) = 5.06+/-0.54 mb, sigma(pN->K*0bar) = 4.02+/-0.45 mb, and sigma(pN->phi) = 1.17+/-0.11 mb. The Cronin effect is observed for the first time for vector mesons containing strange quarks/ compared to the measurements of Cronin et al. for K+- mesons, the measured values of alpha for phi mesons coincide with those of K- mesons for all transverse momenta, while the enhancement for K*0 / K*0bar mesons is smaller.
Measured rapidity distribution for K*0 production in the accessible phase space.
Measured rapidity distribution for K*BAR0 production in the accessible phase space.
Measured rapidity distribution for PHI production in the accessible phase space.
The inclusive production of omega and phi mesons is studied in the backward region of the interaction of 12 GeV protons with polyethylene, carbon, and copper targets. The mesons are measured in e^+ e^- decay channels. The production cross sections of the mesons are presented as functions of rapidity y and transverse momentum p_T. The nuclear mass number dependences (A dependences) are found to be A^{0.710 +/- 0.021(stat) +/- 0.037(syst)} for omega mesons and A^{0.937 +/- 0.049(stat) +/- 0.018(syst)} for phi mesons in the region of 0.9 < y < 1.7 and p_T < 0.75 GeV/c.
Differential cross section as a function of rapidity (YRAP) for OMEGA production.
Differential cross section as a function of rapidity (YRAP) for PHI production.
Differential cross section as a function of transverse momentum (PT) for OMEGA production.
J/psi production in d+Au and p+p collisions at sqrt(s_NN) = 200 GeV has been measured by the PHENIX experiment at rapidities -2.2 < y < +2.4. The cross sections and nuclear dependence of J/\psi production versus rapidity, transverse momentum, and centrality are obtained and compared to lower energy p+A results and to theoretical models. The observed nuclear dependence in d+Au collisions is found to be modest, suggesting that the absorption in the final state is weak and the shadowing of the gluon distributions is small and consistent with Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-based parameterizations that fit deep-inelastic scattering and Drell-Yan data at lower energies.
J/PSI differential cross section in P+P reactions( times di-lepton branching ratio B=5.9%) as a function of rapidity.
J/PSI nuclear modification factor RDA,as a function of rapidity.
Total cross-section for J/PSI production in P P reactions. The total cross section is estimated using a pythia calculation, normalized to our data. The di-lepton branching ratio used is 5.9%.The systematic error given is due to the fit. The choice of the PDF and model was estimated to have little impact in the value of the total cross section.
The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 4.0 GeV/c) of single electrons as a function of centrality in Au+Au collisions at sqrt(s_NN) = 200 GeV. Contributions to the raw spectra from photon conversions and Dalitz decays of light neutral mesons are measured by introducing a thin (1.7% X_0) converter into the PHENIX acceptance and are statistically removed. The subtracted ``non-photonic'' electron spectra are primarily due to the semi-leptonic decays of hadrons containing heavy quarks (charm and bottom). For all centralities, charm production is found to scale with the nuclear overlap function, T_AA. For minimum-bias collisions the charm cross section per binary collision is N_cc^bar/T_AA = 622 +/- 57 (stat.) +/- 160 (sys.) microbarns.
Value of the Alpha power as used in a fit of dN/dy versus Ncoll of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value only includes data from Au+Au collisions The value of Alpha = 1 is the expectation in the absence of medium effects.
Value of the Alpha power as used in a fit of dN/dy versus Ncoll, of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value is calculated including previous data of p+p collisions, measured by PHENIX, in addition of the Au+Au data The value of Alpha = 1 is the expectation in the absence of medium effects.
Spectrum in transverse momentum of electrons created in open heavy flavor decays, for minimum bias events.
We report data on proton-nucleon collisions obtained on Fermilab experiment E711, in which high transverse momentum hadrons are produced near 90° in the proton-nucleon center of mass forming high mass states, using an 800 GeV/c proton beam on targets of beryllium, aluminum, iron, and tungsten. The data presented cover the mass range from 7 to 15 GeV/c2, the three dihadron charge states ++, +-, and --, and parton-parton scattering angles up to cosθ*=0.50. We present the differential mass dihadron cross section, as well as the angular and charge dependence of the measurement. The cross section as a function of the parton-parton scattering angle for the three charge states is shown to vary linearly with the value of the atomic weight. While the angular distributions are shown to be independent of the target type, a small dependence on the charge state of the distributions is observed. The data are shown to be in good agreement with extrapolations from previous measurements and phenomenological QCD calculations.
Atomic weight dependence as function of the parton-parton scattering angle. This angle (theta cm) is defined as the polar angle between the dihadron axis and the beam director in the rest frame of the massive dihadron state. Cross section parameterised as SIG0(MASS**A). Measurements of A are presented here as POWER(N=A,YN=SIG).
Atomic weight dependence as function of the parton-parton scattering angle. This angle (theta cm) is defined as the polar angle between the dihadron axis and the beam director in the rest frame of the massive dihadron state. Cross section parameterised as SIG0(MASS**A). Measurements of A are presented here as POWER(N=A,YN=SIG).
Errors are statistical only.
We present results from the initial run of Fermilab experiment E706. The data include incident π− and p beams at 500 GeV/c on Be and Cu targets, and span the kinematic ranges of transverse momentum and rapidity of 3.5≤pT≤10 GeV/c and −0.7≤yc.m.≤0.7, respectively. We have measured cross sections for π0 and direct-photon production, as well as the ηπ0 production ratio. From the data on Be and Cu, we have extracted the nuclear dependence of π0 production, parametrized as Aα. The cross sections are compared with next-to-leading-log QCD predictions for different choices of the QCD momentum scales and several sets of parton distribution functions.
No description provided.
No description provided.
No description provided.