We study the internal structure of a forward-going pπ + π − π + π − system, with invariant mass in the range 2.5-4 GeV, produced through diffractive dissociation of a beam proton at the ISR. The shape of the system, as seen in its center-of-mass, deviates strongly from isotropic phase space and possesses, rather, a longitudinal structure with a major axis along the incoming proton direction. The final state proton momentum is aligned in the direction of the incoming proton, an effect which becomes more pronounced with increasing diffractive mass.
Acceptance corrected distribution of momentum transfer to the diffractive (p-4pi) system. Data requested from authors.
No description provided.
Measurements are presented of two exclusive diffractive reactions, pp → (Λ 0 φ 0 K + ) p and pp → (Λ 0 Λ 0 p)p , at √ s = 63 GeV . Pronounced correlations with the beam direction are observed (in the rest frame of the forward-going bracketed system) for those outgoing particles which contain the beam valence quarks. In each case there is a forward-Λ 0 in correlation with a backward K + or p, respectively. No such behavior is seen for the particles which do not contain beam valence quarks (φ 0 and Λ 0 , respectively) . Interpreted as examples of pomeron-proton scattering, these results constitute evidence that, for these final states, the pomeron interacts with a single valence quark and apparently back-scatters it. The subsequent hadronization leads to a longitudinal event structure.
Cross sections for forward LAMBDA signal counting both arms of the p p interaction.
Cross sections for forward LAMBDA signal counting both arms of the p p interaction.
No description provided.
None
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
None
No description provided.
We have obtained a sample of 20 465 (2201) events in the channel pp→ ( Λ 0 K + )p at 50 (30) GeV/ c incident momentum with Geneva-Lausanne spectrometer at the CERN SPS. In this analysis we investigate: 1. (i) the production of N ∗ (I = 1 2 ) states in the mass region 1.6 ⩽ M ( Λ 0 K + ) ⩽ 2.6 GeV and momentum transfer 0.06 ⩽ | t | 1.0 (GeV/ c ) 2 , by studing the amplitudes and phases from a moment analysis of the decay angular distribution; 2. (ii) the contribution of the K-exchange Deck model for M ( Λ 0 K + < 2.22 GeV; 3. (iii) the double Regge exchange phenomenology for s Λ 0 K + > 5 GeV 2 and s Λ 0 K + p > 5 GeV 2 .
No description provided.
No description provided.
No description provided.
We have studied the reactionspp→ppπ+π-,K+p→K+pπ+π−π, π+p→ π+,pπ+π− and π−p →π+π− at 147 GeV/c using the 30-inch Fermilab hybrid system. All four reactions were detected with the same apparatus and analyzed in the same way. The energy dependence of the channel cross section was found to beAp−0.6+B for thepp reaction andAp−1+B for the other three. About 90% of the cross section at 147 GeV/c can be accounted for by either beam or target diffraction. Some of the remaining cross section may come from double Pomeron exchange reactions which we tried to isolate. We have tested the hypothesis of a factorizable Pomeron and our data indicates a violation of this hypothesis. We show that the 3π mass enhancement in the mass region 1.2–1.4 GeV is diffractively produced in the π± beam reactions. Fourprong, four-constraint and six-prong, four-constraint cross sections are reported.
No description provided.
No description provided.
CROSS SECTIONS FOR DIFFRACTION DISSOCIATION OF BEAM. FEYNMAN X OF OUTGOING PROTON <-0.96.
Inelastic differential cross sections have been measured for π±p, K±p, and p±p at 140- and 175-GeV/c incident momentum over a |t| range from 0.05 to 0.6 GeV2 and covering a missing-mass region from 2.4 to 9 GeV2. For Mx2 greater than 4 GeV2, the invariant quantity Mx2d2σdtdMx2 was found to be independent of Mx2 at fixed t and could be adequately described by a simple triple-Pomeron form. The values obtained for the triple-Pomeron couplings are identical within statistics for all channels.
Data from 140 GeV and 175 GeV are combined. The distributions are fit to CONST*(SLOPE(C=1)*T+SLOPE(C=2)*T**2).
We have measured the cross section for p+p→p+X for MX2 up to a constant fraction of s. We observe no rise for 130<E<400 GeV. The inelastic cross section for 0<M2<0.06s is 2.50±0.05 mb for various values of s from 263 to 752 GeV2.
No description provided.