A detailed study of the mechanism of emission of pions and protons in the forward and backward hemispheres in 4.5A GeV/c silicon-emulsion interactions has been carried out. For this purpose, a random sample comprising 1024 interactions caused by silicon nuclei is analyzed to examine the behavior of the emission characteristics of pions and protons emitted in the forward and backward hemispheres. The values of the forward-backward ratio and the asymmetry parameter as a function of the number of heavily ionizing particles are determined. The behavior of the angular distributions of pions and protons in the backward hemisphere and multiplicity correlations is also investigated. The results yield quite interesting information regarding the mechanism of production of pions and protons in the backward hemisphere.
No description provided.