Total p-p and 'p-n' Cross Sections at Cosmotron Energies

Chen, Francis F. ; Leavitt, Christopher P. ; Shapiro, Anatole M. ;
Phys.Rev. 103 (1956) 211-225, 1956.
Inspire Record 46809 DOI 10.17182/hepdata.828

The total proton-proton cross section (excluding Coulomb scattering) has been measured at energies from 410 Mev up to 2.6 Bev, using external beams from the Cosmotron. Fast counting equipment was used to measure the attenuation of the beams through polyethylene, carbon, and liquid H2 absorbers. At each energy E, σp−p(E, Ω) was measured as a function of the solid angle Ω subtended by the rear counter at the center of the absorber. The total cross section σp−p was obtained by a least squares straight line extrapolation to Ω=0. The measured σp−p as a function of energy rises sharply from 26.5 mb at 410 Mev to 47.8 mb at 830 Mev and then remains approximately constant out to 1.4 Bev, above which energy it decreases gradually to about 42 mb at 2.6 Bev. Using the same equipment and procedure, we have also measured the D2O-H2O difference cross section, called "σp−n," for protons over the same energy range. From a comparison of "σp−n," and σp−p, with the n−p and n−d measurements of Coor et al. at 1.4 Bev, it is apparent that one nucleon is "shielded" by the other in the deuteron. This effect is not present at energies below 410 Mev. Comparing the measured p−p and "p−n" (corrected) cross sections with the results of other high-energy experiments, one may infer the following conclusions: (1) The sharp rise in σp−p from 400 to 800 Mev results from increasing single pion production, which may proceed through the T=32, J=32 excited nucleon state. (2) Above 1 Bev the inelastic (meson production) p−p cross section appears to be approximately saturated at 27-29 mb. (3) The rise in cross section for n−p interaction in the T=0 state, associated with the rise in double pion production, implies that double meson production also proceeds through the T=32 nucleon state. (4) The probable equality of σp−d and σn−d at 1.4 Bev implies the validity of charge symmetry at this energy.

4 data tables

No description provided.

No description provided.

More…

Photoproduction of $\pi^0$ in the Backward Direction

Buschhorn, G. ; Heide, P. ; Kotz, U. ; et al.
Phys.Rev.Lett. 20 (1968) 230-232, 1968.
Inspire Record 54459 DOI 10.17182/hepdata.21735

None

1 data table

No description provided.


Photoproduction of positive pions at 180 degrees from 0.22 to 3.1 gev

Bouquet, B. ; D' Almagne, B. ; Eschstruth, P.T. ; et al.
Phys.Rev.Lett. 27 (1971) 1244-1247, 1971.
Inspire Record 68896 DOI 10.17182/hepdata.21483

The π+ photoproduction cross section in hydrogen has been measured at 180° for photon energies from 0.22 to 3.1 GeV by detecting the pion in the backward direction. The statistical accuracy of the measurements varies typically from 3 to 10% depending on the energy. The data are compared with other recent experimental results and predictions of phenomenological theories.

1 data table

No description provided.


Bubble Chamber Study of Photoproduction by 2.8-GeV and 4.7-GeV Polarized Photons. 1. Cross-Section Determinations and Production of rho0 and Delta++ in the Reaction gamma p --> p pi+ pi-

Ballam, Joseph ; Chadwick, G.B. ; Gearhart, R. ; et al.
Phys.Rev.D 5 (1972) 545, 1972.
Inspire Record 67165 DOI 10.17182/hepdata.3635

Photoproduction is studied at 2.8 and 4.7 GeV using a linearly polarized monoenergetic photon beam in a hydrogen bubble chamber. We discuss the experimental procedure, the determination of channel cross sections, and the analysis of the channel γp→pπ+π−. A model-independent analysis of the ρ0-decay angular distribution allows us to measure nine independent density-matrix elements. From these we find that the reaction γp→pρ0 proceeds almost completely through natural parity exchange for squared momentum transfers |t|<1 GeV2 and that the ρ production mechanism is consistent with s-channel c.m. helicity conservation for |t|<0.4 GeV2. A cross section for the production of π+π− pairs in the s-channel c.m. helicity-conserving p-wave state is determined. The ρ mass shape is studied as a function of momentum transfer and is found to be inconsistent with a t-independent Ross-Stodolsky factor. Using a t-dependent parametrization of the ρ0 mass shape we derive a phenomenological ρ0 cross section. We compare our phenomenological ρ0 cross section with other experiments and find good agreement for 0.05<|t|<1 GeV2. We discuss the discrepancies in the various determinations of the forward differential cross section. We study models for ρ0 photoproduction and find that the Söding model best describes the data. Using the Söding model we determine a ρ0 cross section. We determine cross sections and nine density-matrix elements for γp→Δ++π−. The parity asymmetry for Δ++ production is incompatible with simple one-pion exchange. We compare Δ++ production with models.

20 data tables

FROM QUOTED TOPOLOGICAL CROSS SECTIONS. 1.44 GEV CROSS SECTION PUBLISHED PREVIOUSLY.

No description provided.

NO TMIN CORRECTION HAS BEEN MADE.

More…

Observation of a broad peak in the production of four charged pions by e+ e- collisions around 1.6 gev

Barbarino, G. ; Grilli, M. ; Iarocci, E. ; et al.
Lett.Nuovo Cim. 3 (1972) 689-692, 1972.
Inspire Record 77547 DOI 10.17182/hepdata.37365

None

1 data table

STATISTICAL ERRORS ONLY.


Photoproduction of k+ lambda0 and k+ sigma0 from hydrogen at constant momentum transfer t between 1.05 and 2.2 gev

Feller, P. ; Menze, D. ; Opara, U. ; et al.
Nucl.Phys.B 39 (1972) 413-420, 1972.
Inspire Record 75243 DOI 10.17182/hepdata.32925

For the reaction γ p → K + Λ 0 the differential cross section has been measured at t = −0.147 GeV 2 ( θ C.M. = 26.5 ± 3.5°) and photoenergies between 1.05 and 2.2 GeV and for the reaction γ p→K + Σ 0 at ≈−0.17 GeV 2 ( θ C.M. = 28±3.5°) and photoenergies between 1.3 and 2.2 GeV. For this four momentum transfer the differential cross section of K + Λ 0 photoproduction has a surprising steep increase above threshold and stays nearly constant up to 2.2 GeV. The K + Σ 0 cross section increases from 1.3 to 1.56 GeV and goes down gradually at higher energies.

2 data tables

AT CONSTANT MOMENTUM TRANSFER OF -T = 0.147 GEV**2.

AT APPROXIMATELY CONSTANT MOMENTUM TRANSFER OF -T = 0.17 GEV**2.


Multihadron production in e+ e- collisions at high energy

Grilli, M. ; Iarocci, E. ; Spillantini, P. ; et al.
Nuovo Cim.A 13 (1973) 593-644, 1973.
Inspire Record 87243 DOI 10.17182/hepdata.1179

Multihadron production by electron-positron colliding beams has been investigated for total centre-of-mass energies ranging from 1.2 to 2.4 GeV. The total cross-section, σtot ≡ σ(e+e−→π+π−+ + anything), is of the order of σμμ ≡ σ(e+e−→μ+μ−), with a threshold near 1 GeV. Partial cross-sections for the various channels are also derived. The cross-section of the specific channel e+e−→π+π−π+π− exhibits an energy dependence which is suggestive of a heavier vector meson, ρ' (mρ,≈ 1.6 GeV,Гρ, ≈ 350 Mev), having the same quantum numbers as the ρ-meson. An upper limit is given for the coupling constantfρ′ (fρ′/4π<18, wherefρ′=mρ′2e/gγρ′). Final states withG+ parity are found to be much more abundant than those withG− parity. The average multiplicity (charged plus neutral final-state pions) is found to be betweet 4 and 5 over all the energy range explored.

3 data tables

No description provided.

VALUES OF R CALCULATED FROM TOTAL CROSS SECTION.

No description provided.


Momentum dependence of the 180-degrees pi- p charge-exchange cross-section

Kistiakowsky, V. ; Feld, B.T. ; Triantis, F.A. ; et al.
Phys.Rev.D 6 (1972) 1882-1905, 1972.
Inspire Record 83145 DOI 10.17182/hepdata.3611

The π−+p→π0+n differential cross section at 180° has been measured for 52 values of π− momentum from 1.8 to 6.0 GeV/c using a constant-geometry detection system. The average statistical uncertainty is ∼5% and the systematic uncertainty is ∼10%. The details of the experiment and the data analysis are discussed. The data are compared with those of other experiments with which they are generally in agreement. One set of data disagrees with those presented here and a possible reason for this is discussed. A five-parameter fit of the predictions of a dual-resonance model to our data gave excellent agreement. The differential cross sections at 180° for π±p elastic scattering have been compiled and the moduli and relative phase of the T=12 and T=32 pion-nucleon s- and u-channel amplitudes (|A12|, |A32|, and cosδ) have a minimum at u=0.4 GeV/c and, in the s channel, a corresponding minimum at s=2.2 GeV/c.

53 data tables

No description provided.

No description provided.

No description provided.

More…

Backward photoproduction of neutral pions off hydrogen at photon energies between 0.4 and 2.2 gev

Becks, H. ; Feller, P. ; Menze, D. ; et al.
Nucl.Phys.B 60 (1973) 267-276, 1973.
Inspire Record 83927 DOI 10.17182/hepdata.6749

The differential cross section has been measured for the reaction γ +p→p+ π o at the Bonn 2.5 GeV electron synchrotron in the energy range from 0.4 to 2.2 GeV for a c.m. angle of 150 degrees. The protons were detected in a magnetic spectrometer system. The excitation curve shows a distinct resonance structure. The total corrections to the counting rate are about 3%. The contribution of the process γ +p→p+2 π was separated. The uncertainty of this separation leads to an error of about 4% in the cross section.

2 data tables

No description provided.

No description provided.


Polarization in backward elastic pi+ p scattering at 2.0, 3.5 and 4.0 gev/c

Bradamante, F. ; Conetti, S. ; Daum, C. ; et al.
Nucl.Phys.B 56 (1973) 356-380, 1973.
Inspire Record 84069 DOI 10.17182/hepdata.6773

Data on polarization in backward elastic π + p scattering at 2.0, 3.5 and 4.0 GeV/ c are presented. The data at 2.0 GeV/ c are compared with the result of a recent phase-shift analysis. Our data at 3.5 and 4.0 GeV/ c , and existing data above 3 GeV/ c , show no significant energy dependence of the polarization over the measured u -range. A comparison with Regge models and with results from amplitude analysis is made.

6 data tables

No description provided.

No description provided.

No description provided.

More…