TWO-BODY HYPERCHARGE EXCHANGE REACTIONS IN K- p AND pi+ p INTERACTIONS AT 10-GeV/c AND 16-GeV/c

The Aachen-Berlin-Bonn-CERN-Cracow-London-Vienna collaboration Girtler, P. ; Otter, G. ; Bottcher, H. ; et al.
Nucl.Phys.B 159 (1979) 397, 1979.
Inspire Record 146303 DOI 10.17182/hepdata.34626

Cross-section values or upper limits are presented for twenty-five two-body hypercharge-exchange reactions in K − p and π + p interactions at 10 and 16 GeV/ c . The 16 GeV/ c results are compared with some predictions of line-reversal plus exchange-degenerate Regge poles, of SU(3) and of the additive quark model. Agreement is found in all cases.

1 data table match query

No description provided.


Investigation of (K pi) Mass Enhancement Near 1870-MeV in the Reaction K- p --> K- pi+ n at 10-GeV/c and 16-GeV/c

The Aachen-Berlin-CERN-London-Vienna collaboration Grassler, H. ; Laven, H. ; Otter, G. ; et al.
Nucl.Phys.B 125 (1977) 189, 1977.
Inspire Record 119121 DOI 10.17182/hepdata.35408

An enhancement in the (K − π + ) mass distribution at 1871 ± 10 MeV with full width of 285 ± 40 MeV is observed in the charge-exchange reaction K − p → K − π + n at 10 and 16 GeV/ c . The energy dependence of its cross section, the shape of the differential cross section d σ /d t and the decay angular distributions are consistent with a production mechanism by pion exchange. No significant enhancement at the same mass is seen in the non-charge exchange reaction K − p → (K π ) − p. The experimental evidence is reviewed and it is suggested that there may be more than one K ∗ enhancement in the 1700–1900 mass region.

2 data tables match query

FOR ALL EVENTS WITH 1.7 < M(K- PI+) < 2 GEV. NO FORWARD DIP. 'THETA CUT'.

THE 14.3 GEV/C POINT IS FROM ANALYSING THE DATA OF M. SPIRO ET AL., PL 60B, 389 (1976) IN THE SAME WAY. 'THETA-CUT'.


Partial Wave Analysis of the (anti-K0 pi- pi0)-System Produced in the q-Mass Region in K- p --> (anti-K0 pi- pi0) p at 10-GeV/c and 16-GeV/c

The Aachen-Berlin-CERN-London-Vienna collaboration Otter, G. ; Barnham, Keith W J ; Cocconi, Vanna T ; et al.
Nucl.Phys.B 96 (1975) 29-44, 1975.
Inspire Record 98691 DOI 10.17182/hepdata.31971

A partial-wave analysis has been performed of the diffractively produced low-mass ( K ̄ 0 π − π 0 ) system in the reaction K − p → ( K ̄ 0 π − π 0 ) p at 10 and 16 GeV/ c . Thus information complementary to that derived from the K − p → (K − π + π − )p) channel is obtained. The presence of the K ϱ decay mode, besides the dominant K ∗ (890)π mode, for the state J P = 1 + , is confirmed. It is also confirmed that for this 1 + state the assumption of factorization of the amplitude into “production” and “decay” does not hold: the two decay modes K ∗ π and K ϱ have different polarisation properties (helicity is approximately conserved in the t -channel for the first, in the s -channel for the second). The assumption that the ( K ̄ 0 π − π 0 ) system has isospin I = 1 2 has been tested and found to hold. From the cross sections for the various J P states, assuming I = 1 2 , the cross sections for the (K − π + π − ) system are predicted and compared with the experimental ones. In general, agreement is found.

1 data table match query

No description provided.


Study of s-Channel and t-Channel Helicity Conservation in the Diffractive Part of the Reaction pi+- p --> pi (n pi) at 16-GeV/c

The Aachen-Berlin-Bonn-CERN-Heidelberg collaboration Grässler, H. ; Kirk, H. ; Otter, G. ; et al.
Nucl.Phys.B 95 (1975) 1-11, 1975.
Inspire Record 99495 DOI 10.17182/hepdata.31974

By means of an isospin analysis of the reaction π ± p→ π (N π ) at 16 GeV/ c we have determined the decay angular distributions of the N π system with I= 1 2 produced by isospin zero exchange. Helicity conservation is not observed in the t -channel for the N π mass region below 1.6 GeV, where diffraction dissociation of the proton is supposed to dominate. There are indications for approximate t -channel helicity conservation for N ∗ (1690) production. In the helicity frame, the experimental data are not in agreement with s -channel helicity conservation over the whole N π mass range investigated. Thus the diffractive process N→N π differs both from the process N→N ππ (or π → πππ and K→K ππ ) which approximately conserves t -channel helicity and from the elastic scattering N→N which conserves helicity in the s -channel.

2 data tables match query

No description provided.

FIT TO ISOSPIN HALF NUCLEON RESONANCE PRODUCTION WITH ISOSPIN ZERO EXCHANGE.


Evidence for Different Polarization Properties of the rho K and K* (890) pi States of the 1+ Wave in the Q Region

The Aachen-Berlin-CERN-London-Vienna collaboration Otter, G. ; Rudolph, G. ; Rumph, K. ; et al.
Nucl.Phys.B 93 (1975) 365-386, 1975.
Inspire Record 99251 DOI 10.17182/hepdata.32005

A partial-wave analysis has been performed on the (K − π − π + ) system produced in the reaction K − p → K − π − π + p at 10 and 16 GeV/ c . In the Q mass region it is found that the two dominant states, K ∗ π and Kπ, both in 1 + S wave, are produced with different polarisations, helicity being approximately conserved in the t -channel for K ∗ π and in the s -channel for Kπ. This is in contradiction with the assumption that the amplitude can be factorised into “production” and “decay” parts, and hence that the two amplitudes are fully coherent. The phase variation of the two states do not indicate simple resonance behaviour. It is concluded that the Q-mass enhancement is composite.

1 data table match query

No description provided.


Evidence for Structure in the 1+ State of the Q Region

The Aachen-Berlin-CERN-London-Vienna & Ecole Poly-Rutherford-Saclay collaborations Otter, G. ; Rudolph, G. ; Schmid, P. ; et al.
Nucl.Phys.B 106 (1976) 77-94, 1976.
Inspire Record 3373 DOI 10.17182/hepdata.35803

We have performed a partial-wave analysis of the mainly diffractively produced low-mass (K ππ ) system in the reactions K − p → K − π + π − p and K − p → K 0 π − π 0 p at 10, 14 and 16 GeV /c . We find that the dominant 1 + S ( K ∗ π ) state has possibly a two-peak structure (around 1.27 and 1.37 GeV). In contrast the 1 + S(K ϱ ) state shows one narrow peak near thershold (around 1.27 GeV). These states are found to be of different origin. The results favour the interpretation of the 1 + S(K ϱ ) as a 1 + resonance below the (K ϱ ) threshold. The t ′ pp dependence is found to be different for the 1 + and 0 − states.

1 data table match query

No description provided.


Evidence for Unnatural Spin - Parity States of (K pi pi)0 in the Charge Exchange Reaction K- p --> (anti-K0 pi+ pi-) n

The Aachen-Berlin-CERN-London-Vienna & Athens-Democritos-Liverpool-Vienna collaborations Otter, G. ; Rudolph, G. ; Schmitz, P. ; et al.
Nucl.Phys.B 84 (1975) 333-341, 1975.
Inspire Record 90804 DOI 10.17182/hepdata.32131

A partial-wave analysis of the (K ππ ) 0 system produced in the charge exchange reaction K − p →( K 0 π + π − ) n has been made in the mass range 1.04 ⩽ M (K ππ ) < 1.56 GeV c data at 8, 10 and 16 GeV/ c . It was found that in about 2 3 of the cases, the (K ππ ) 0 system is produced in states of unnatural spin-parity, namely J P = 0 − and 1 + ; the rest is in the natural spin-parity state J P = 2 + state is consistent with being all K ∗ (1420). The unnatural spin-parity states are produced mostly (∼ 80% of the events) by natural parity exchange. The facts that unnatural spin-parity states are produced in this non-diffractive channel, with J P = 1 + dominant, and that the exchange responsible for their production is mostly of natural parity, are similar to what was found for the charged (K ππ ) − system in the diffractive reaction K − p→(K ππ ) − p. However, the absolute value and the energy dependence of the cross sections are very different in the two cases.

2 data tables match query

CORRECTED FOR UNSEEN AK0 DECAY MODES.

ACTUALLY CROSS SECTIONS FOR PRODUCTION IN MASS REGION 1.04 < M(AK0 PI+ PI-) < 1.56 GEV IN THE STATES JP = 1+, 2+ AND 0- RESPECTIVELY.


Spin-Parity Analysis of the Diffractively Produced Low Mass n pi System in the Reaction pi+- p --> pi+- (n pi)+ at 16-GeV/c

The Aachen-Berlin-Bonn-CERN collaboration Otter, G. ; Rudolph, G. ; Wieczorek, H. ; et al.
Nucl.Phys.B 130 (1977) 349, 1977.
Inspire Record 119192 DOI 10.17182/hepdata.35244

The dominant partial waves of the diffractively produced N π system at low Nπ masses (⩽ 1.4 GeV) are determined in the reactions π ± p → π (N π ) at 16 GeV/ c . A satisfactory description of our data can only be obtained by strong contributions of both a 1 2 − S-wave and a 3 2 + P-wave, violating the Gribov-Morrison rule. Spin and parity of the diffractively produced states are found from the interference between diffraction and Δ (1236) production. The interference term is obtained by an isospin analysis.

1 data table match query

No description provided.


Strange Particle Production in Three and Four-Body Final States of 16-GeV/c pi+- p Reactions

The AACHEN-BERLIN-BONN-CERN-CRACOW collaboration Bosetti, P. ; Grassler, H. ; Otter, G. ; et al.
Nucl.Phys.B 128 (1977) 205-218, 1977.
Inspire Record 126061 DOI 10.17182/hepdata.35256

Three- and four-body final states with strange particles are studied in π + p and π − p interactions at 16 GeV/ c . We present cross sections and investigate their energy dependence. Production mechanism, resonance production and quantum number transfer are discussed. Strong Y ∗ (1385) production is found in the reaction π + p → Λ K + π + , while the corresponding π − p reaction is dominated by production of K ∗ (890). In the NK K π channels, the K and K are produced mainly at the same vertex, i.e. non-strangeness exchange ΔS = 0 is dominant (about 75% of the cases), whereas in the Λ K ππ channels, the Λ and K are more frequently produced at opposite vertices, i.e. | ΔS | = 1 exchange is important (about 60% of the cases). Results on the polarization of the lambdas produced in the π + p reactions are given.

1 data table match query

No description provided.


A Partial Wave Analysis of the ($K^+ K^- \pi^-$) System Produced in $\pi^- p \to K^+ K^- \pi^- p$ at 16-{GeV}/$c$

The Aachen-Bari-Bonn-CERN-Glasgow-Liverpool-Milan collaboration Armstrong, T.A. ; Baccari, B. ; Bonesini, M. ; et al.
Nucl.Phys.B 202 (1982) 1-20, 1982.
Inspire Record 169445 DOI 10.17182/hepdata.44589

The reaction π − p → K + K − π − p at 16 GeV/ c was studied in the CERN OMEGA spectrometer and a partial-wave analysis (PWA) of the low-mass (K + K − π − ) system (1.3–2.0 GeV) was performed. Only states in the unnatural spin-parity series produced by natural parity exchange are important and they approximately conserve t -channel helicity. The 1 + S K ∗ K wave dominates the low-mass (K + K − π − ) region. We observe an enhancement in 2 − P K ∗ K wave at a mass of 1.7 GeV, consistent with the decay of the A 3 resonance.

1 data table match query

TOTAL ACCEPTANCE CORRECTED CROSS SECTION.