Inclusive Hadron Production in Upsilon Decays and in Nonresonant electron-Positron Annihilation at 10.49-GeV

The CLEO collaboration Behrends, S. ; Chadwick, K. ; Gentile, T. ; et al.
Phys.Rev.D 31 (1985) 2161, 1985.
Inspire Record 205668 DOI 10.17182/hepdata.23589

We report measurements of single-particle inclusive spectra and two-particle correlations in decays of the Υ(1S) resonance and in nonresonant annihilations of electrons and positrons at center-of-mass energy 10.49 GeV, just below BB¯ threshold. These data were obtained using the CLEO detector at the Cornell Electron Storage Ring (CESR) and provide information on the production of π, K, ρ, K*, φ, p, Λ, and Ξ in quark and gluon jets. The average multiplicity of hadrons per event for upsilon decays (compared with continuum annihilations) is 11.4 (10.5) pions, 2.4 (2.2) kaons, 0.6 (0.5) ρ0, 1.2 (0.8) K*, 0.6 (0.4) protons and antiprotons, 0.15 (0.08) φ, 0.19 (0.07) Λ and Λ¯, and 0.016 (0.005) Ξ− and Ξ¯ +. We have also seen evidence for η and f0 production. The most significant differences between upsilon and continuum final states are (1) the inclusive energy spectra fall off more rapidly with increasing particle energy in upsilon decays, (2) the production of heavier particles, especially baryons, is not as strongly suppressed in upsilon decays, and (3) baryon and antibaryon are more likely to be correlated at long range in upsilon decay than in continuum events.

11 data tables match query

OBSERVED MEAN MULTIPLCITIES OBTAINED BY INTEGRATION OF ENERGY DISTRIBUTIONS.

OBSERVED MEAN MULTIPLICITIES OBTAINED BY INTEGRATION OF ENERGY DISTRIBUTIONS.

OBSERVED MEAN MULTIPLICITIES OBTAINED BY INTERGRATION OF ENERGY DISTRIBUTIONS.

More…

Charged-particle pseudorapidity density at mid-rapidity in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 79 (2019) 307, 2019.
Inspire Record 1706753 DOI 10.17182/hepdata.89268

The pseudorapidity density of charged particles, $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$, in p-Pb collisions has been measured at a centre-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{\rm{NN}}}$ = 8.16 TeV at mid-pseudorapidity for non-single-diffractive events. The results cover 3.6 units of pseudorapidity, $|\eta|<1.8$. The $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$ value is $19.1\pm0.7$ at $|\eta|<0.5$. This quantity divided by $\langle N_\rm{part} \rangle/2$, is $4.73\pm0.20$, which is 9.5% higher than the corresponding value for p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV. Measurements are compared with models based on different mechanisms for particle production. All models agree within uncertainties with data in the Pb-going side, while HIJING overestimates, showing a symmetric behaviour, and EPOS underestimates the p-going side of the $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$ distribution. Saturation-based models reproduce the distributions well for $\eta>-1.3$. The $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$ is also measured for different centrality estimators, based both on the charged-particle multiplicity and on the energy deposited in the Zero-Degree Calorimeters. A study of the implications of the large multiplicity fluctuations due to the small number of participants for systems like p-Pb in the centrality calculation for multiplicity-based estimators is discussed, demonstrating the advantages of determining the centrality with energy deposited near beam rapidity.

3 data tables match query

Pseudorapidity density of charged particles in p–Pb NSD collisions at a centre-of-mass energy of 8.16 TeV.

Values of average pseudorapidity density of charged particles in p–Pb NSD collisions as a function of the energy in the centre-of-mass.

Pseudorapidity density of charged particles in p–Pb NSD collisions at 8.16 TeV for 60-80% centrality class and ZNA estimator.