The spin-exotic hybrid meson $\pi_{1}(1600)$ is predicted to have a large decay rate to the $\omega\pi\pi$ final state. Using 76.6~pb$^{-1}$ of data collected with the GlueX detector, we measure the cross sections for the reactions $\gamma p \to \omega \pi^+ \pi^- p$, $\gamma p \to \omega \pi^0 \pi^0 p$, and $\gamma p\to\omega\pi^-\pi^0\Delta^{++}$ in the range $E_\gamma =$ 8-10 GeV. Using isospin conservation, we set the first upper limits on the photoproduction cross sections of the $\pi^{0}_{1}(1600)$ and $\pi^{-}_{1}(1600)$. We combine these limits with lattice calculations of decay widths and find that photoproduction of $\eta'\pi$ is the most sensitive two-body system to search for the $\pi_1(1600)$.
Measured $\sigma(\gamma p\to\omega\pi^+\pi^-p)$ values for $8<E_\gamma<10$ GeV and $0.1<-t<0.5$ (GeV$^2$). There are normalization uncertainties that are 100% correlated between the three cross section measurements. These include 5% for the luminosity, 13.5% for the tracking efficiency, and 8.1% for the photon efficiency.
Measured $\sigma(\gamma p\to\omega\pi^0\pi^0p)$ values for $8<E_\gamma<10$ GeV and $0.1<-t<0.5$ (GeV$^2$). There are normalization uncertainties that are 100% correlated between the three cross section measurements. These include 5% for the luminosity, 9.1% for the tracking efficiency, and 24.3% for the photon efficiency.
Measured $\sigma(\gamma p\to\omega\pi^-\pi^0\Delta^{++})$ values for $8<E_\gamma<10$ GeV and $0.1<-t<0.5$ (GeV$^2$). There are normalization uncertainties that are 100% correlated between the three cross section measurements. These include 5% for the luminosity, 16% for the tracking efficiency, and 16.3% for the photon efficiency.
We measure the spin-density matrix elements (SDMEs) of the $\Delta^{++}(1232)$ in the photoproduction reaction $\gamma p \to \pi^-\Delta^{++}(1232)$ with the GlueX experiment in Hall D at Jefferson Lab. The measurement uses a linearly--polarized photon beam with energies from $8.2$ to $8.8$~GeV and the statistical precision of the SDMEs exceeds the previous measurement by three orders of magnitude for the momentum transfer squared region below $1.4$ GeV$^2$. The data are sensitive to the previously undetermined relative sign between couplings in existing Regge-exchange models. Linear combinations of the extracted SDMEs allow for a decomposition into natural and unnatural--exchange amplitudes. We find that the unnatural exchange plays an important role in the low momentum transfer region.
Spin-density matrix elements for the photoproduction of $\Delta(1232)^{++}$ in the Gottfried-Jackson system. The first uncertainty is statistical, the second systematic.
The GlueX experiment at Jefferson Lab studies photoproduction of mesons using linearly polarized $8.5\,\text{GeV}$ photons impinging on a hydrogen target which is contained within a detector with near-complete coverage for charged and neutral particles. We present measurements of spin-density matrix elements for the photoproduction of the vector meson $\rho$(770). The statistical precision achieved exceeds that of previous experiments for polarized photoproduction in this energy range by orders of magnitude. We confirm a high degree of $s$-channel helicity conservation at small squared four-momentum transfer $t$ and are able to extract the $t$-dependence of natural and unnatural-parity exchange contributions to the production process in detail. We confirm the dominance of natural-parity exchange over the full $t$ range. We also find that helicity amplitudes in which the helicity of the incident photon and the photoproduced $\rho(770)$ differ by two units are negligible for $-t<0.5\,\text{GeV}^{2}/c^{2}$.
Spin-density matrix elements for the photoproduction of $\rho(770)$ in the helicity system. The first uncertainty is statistical, the second systematic. The systematic uncertainties for the polarized SDMEs $\rho^1_{ij}$ and $\rho^2_{ij}$ contain an overall relative normalization uncertainty of 2.1% which is fully correlated for all values of $-t$.
Spin-density matrix elements for the photoproduction of $\rho(770)$ in the helicity system. The first uncertainty is statistical, the second systematic. The systematic uncertainties for the polarized SDMEs $\rho^1_{ij}$ and $\rho^2_{ij}$ contain an overall relative normalization uncertainty of 2.1% which is fully correlated for all values of $-t$.
The ALICE Collaboration reports three measurements in ultra-peripheral proton$-$lead collisions at forward rapidity. The exclusive two-photon process \ggmm and the exclusive photoproduction of J/$\psi$ are studied. J/$\psi$ photoproduction with proton dissociation is measured for the first time at a hadron collider. The cross section for the two-photon process of dimuons in the invariant mass range from 1 to 2.5 GeV/$c^2$ agrees with leading order quantum electrodynamics calculations. The exclusive and dissociative cross sections for J/$\psi$ photoproductions are measured for photon$-$proton centre-of-mass energies from 27 to 57 GeV. They are in good agreement with HERA results.
Differential cross sections DSIGMA/DM for exclusive GAMMA* GAMMA* to MU+ MU- production in p–Pb UPCs for each mass and rapidity interval
Exclusive J/psi photoproduction cross section in p-Pb UPC.
Dissociative J/psi photoproduction cross section in p-Pb UPC.
We report the total and differential cross sections for $J/\psi$ photoproduction with the large acceptance GlueX spectrometer for photon beam energies from the threshold at 8.2~GeV up to 11.44~GeV and over the full kinematic range of momentum transfer squared, $t$. Such coverage facilitates the extrapolation of the differential cross sections to the forward ($t = 0$) point beyond the physical region. The forward cross section is used by many theoretical models and plays an important role in understanding $J/\psi$ photoproduction and its relation to the $J/\psi-$proton interaction. These measurements of $J/\psi$ photoproduction near threshold are also crucial inputs to theoretical models that are used to study important aspects of the gluon structure of the proton, such as the gluon Generalized Parton Distribution (GPD) of the proton, the mass radius of the proton, and the trace anomaly contribution to the proton mass. We observe possible structures in the total cross section energy dependence and find evidence for contributions beyond gluon exchange in the differential cross section close to threshold, both of which are consistent with contributions from open-charm intermediate states.
$\gamma p \rightarrow J/\psi p$ total cross sections in bins of beam energy. The first uncertainties are statistical, and the second are systematic. There is an additional fully correlated systematic uncertainty of 19.5% on the total cross section, not included here.
$\gamma p \rightarrow J/\psi p$ differential cross sections 8.2–9.28 GeV beam energy range, average $t$ and beam energy in bins of $t$. The first cross section uncertainties are statistical, and the second are systematic. The overall average beam energy is 8.93 GeV. There is an additional fully correlated systematic uncertainty of 19.5% on the total cross section, not included here.
$\gamma p \rightarrow J/\psi p$ differential cross sections 9.28–10.36 GeV beam energy range, average $t$ and beam energy in bins of $t$. The first cross section uncertainties are statistical, and the second are systematic. The overall average beam energy is 9.86 GeV. There is an additional fully correlated systematic uncertainty of 19.5% on the total cross section, not included here.
Multijet events at large transverse momentum ($p_\mathrm{T}$) are measured at $\sqrt{s}$ = 13 TeV using data recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The multiplicity of jets with $p_\mathrm{T}$$>$ 50 GeV that are produced in association with a high-$p_\mathrm{T}$ dijet system is measured in various ranges of the $p_\mathrm{T}$ of the jet with the highest transverse momentum and as a function of the azimuthal angle difference $\Delta\phi_{1,2}$ between the two highest $p_\mathrm{T}$ jets in the dijet system. The differential production cross sections are measured as a function of the transverse momenta of the four highest $p_\mathrm{T}$ jets. The measurements are compared with leading and next-to-leading order matrix element calculations supplemented with simulations of parton shower, hadronization, and multiparton interactions. In addition, the measurements are compared with next-to-leading order matrix element calculations combined with transverse-momentum dependent parton densities and transverse-momentum dependent parton shower.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 200 < $p_{T1}$ < 400 GeV and for an azimuthal separation between the two leading jets of $0 < \Delta\Phi_{1,2} < 150^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 200 < $p_{T1}$ < 400 GeV and for an azimuthal separation between the two leading jets of $150 < \Delta\Phi_{1,2} < 170^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 200 < $p_{T1}$ < 400 GeV and for an azimuthal separation between the two leading jets of $170 < \Delta\Phi_{1,2} < 180^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Measurements of the production cross-sections of the Standard Model (SM) Higgs boson ($H$) decaying into a pair of $\tau$-leptons are presented. The measurements use data collected with the ATLAS detector from $pp$ collisions produced at the Large Hadron Collider at a centre-of-mass energy of $\sqrt{s}=13\,\text{TeV}$, corresponding to an integrated luminosity of $139\,\text{fb}^{-1}$. Leptonic ($\tau\to\ell\nu_{\ell}\nu_{\tau}$) and hadronic ($\tau\to\text{hadrons}~\nu_{\tau}$) decays of the $\tau$-lepton are considered. All measurements account for the branching ratio of $H\to\tau\tau$ and are performed with a requirement $|y_H|<2.5$, where $y_H$ is the true Higgs boson rapidity. The cross-section of the $pp\to H\to\tau\tau$ process is measured to be $2.94 \pm 0.21 \text{(stat)} ^{+\,0.37}_{-\,0.32} \text{(syst)}$ pb, in agreement with the SM prediction of $3.17\pm0.09~ \mbox{pb}$. Inclusive cross-sections are determined separately for the four dominant production modes: $2.65 \pm 0.41 \text{(stat)} ^{+\,0.91}_{-\,0.67} \text{(syst)}$ pb for gluon$-$gluon fusion, $0.197 \pm 0.028 \text{(stat)} ^{+\,0.032}_{-\,0.026} \text{(syst)}$ pb for vector-boson fusion, $0.115 \pm 0.058 \text{(stat)} ^{+\,0.042}_{-\,0.040} \text{(syst)}$ pb for vector-boson associated production, and $0.033 \pm 0.031 \text{(stat)} ^{+\,0.022}_{-\,0.017} \text{(syst)}$ pb for top-quark pair associated production. Measurements in exclusive regions of the phase space, using the simplified template cross-section framework, are also performed. All results are in agreement with the SM predictions.
Observed yields in the boost_0_1J signal region category of the hh channel.
Observed yields in the boost_0_1J signal region category of the hh channel.
Observed yields in the boost_0_ge2J signal region category of the hh channel.
The reaction $\gamma p \rightarrow p \pi^0 \eta$ has been studied with the CBELSA/TAPS detector at the electron stretcher accelerator ELSA in Bonn for incident photon energies from threshold up to 3.1 GeV. This paper has been motivated by the recently claimed observation of a narrow structure in the M$_{N\eta}$ invariant mass distribution at a mass of 1678 MeV/$c^2$. The existence of this structure cannot be confirmed in the present work. Instead, for E$_{\gamma}$ = 1400 - 1500 MeV and the cut M$_{p\pi^0} \le 1190 $ MeV/$c^2$ a statistically significant structure in the M$_{p\eta}$ invariant mass distribution near 1700 MeV/$c^2$ is observed with a width of $\Gamma\approx 35$ MeV/$c^2$ while the mass resolution is $\sigma_{res}$ = 5 MeV/$c^2$. Increasing the incident photon energy from 1420 to 1540 MeV this structure shifts in mass from $\approx$ 1700MeV/c$^2$ to $\approx$ 1725 MeV/$c^2$; the width increases to about 50 MeV/$c^2$ and decreases thereafter. The cross section associated with this structure reaches a maximum of $\approx$ 100 nb around E$_{\gamma} \approx$ 1490 MeV (W $\approx $ 1920 MeV), which coincides with the $p a_0$ threshold. Three scenarios are discussed which might be the origin of this structure in the M$_{p\eta}$ invariant mass distribution. The most likely interpretation is that it is due to a triangular singularity in the $\gamma p \rightarrow p a_0 \rightarrow p \pi^0 \eta$ reaction
Differential cross section for $\pi^0$ in the $\gamma p$ for the incident photon energy range of $E_\gamma$ = 1400-1500 MeV.
Differential cross section for $\eta$ in the $\gamma p$ for the incident photon energy range of $E_\gamma$ = 1400-1500 MeV.
Differential cross section for $p$ in the $\gamma p$ for the incident photon energy range of $E_\gamma$ = 1400-1500 MeV.
We study the spin-exotic $J^{PC} = 1^{-+}$ amplitude in single-diffractive dissociation of 190 GeV$/c$ pions into $\pi^-\pi^-\pi^+$ using a hydrogen target and confirm the $\pi_1(1600) \to \rho(770) \pi$ amplitude, which interferes with a nonresonant $1^{-+}$ amplitude. We demonstrate that conflicting conclusions from previous studies on these amplitudes can be attributed to different analysis models and different treatment of the dependence of the amplitudes on the squared four-momentum transfer and we thus reconcile their experimental findings. We study the nonresonant contributions to the $\pi^-\pi^-\pi^+$ final state using pseudo-data generated on the basis of a Deck model. Subjecting pseudo-data and real data to the same partial-wave analysis, we find good agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the $J^{PC} = 1^{-+}$ amplitude and also for amplitudes with other $J^{PC}$ quantum numbers. We investigate for the first time the amplitude of the $\pi^-\pi^+$ subsystem with $J^{PC} = 1^{--}$ in the $3\pi$ amplitude with $J^{PC} = 1^{-+}$ employing the novel freed-isobar analysis scheme. We reveal this $\pi^-\pi^+$ amplitude to be dominated by the $\rho(770)$ for both the $\pi_1(1600)$ and the nonresonant contribution. We determine the $\rho(770)$ resonance parameters within the three-pion final state. These findings largely confirm the underlying assumptions for the isobar model used in all previous partial-wave analyses addressing the $J^{PC} = 1^{-+}$ amplitude.
Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the first $t^\prime$ bin from $0.100$ to $0.141\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 8(a). In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_0.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_0</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>
Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the second $t^\prime$ bin from $0.141$ to $0.194\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(a) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_1.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_1</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>
Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the third $t^\prime$ bin from $0.194$ to $0.326\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(b) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_2.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_2</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>
We report on the measurement of spin density matrix elements of the $\Lambda(1520)$ in the photoproduction reaction $\gamma p\rightarrow \Lambda(1520)K^+$, via its subsequent decay to $K^{-}p$. The measurement was performed as part of the GlueX experimental program in Hall D at Jefferson Lab using a linearly polarized photon beam with $E_\gamma =$ 8.2-8.8 GeV. These are the first such measurements in this photon energy range. Results are presented in bins of momentum transfer squared, $-(t-t_\text{0})$. We compare the results with a Reggeon exchange model and determine that natural exchange amplitudes are dominant in $\Lambda(1520)$ photoproduction.
Numerical results for all presented SDMEs. The first uncertainty is statistical, the second systematic
Numerical results for all presented natural and unnatural combinations, and covariances between $\rho^1_{11}$ and $\rho^1_{33}$. The first uncertainty is statistical, the second systematic
This table contains thinned out samples of the Markov chains used in the parameter estimation of the SDME measurements for $-(t-t_\text{0}) = 0.197\pm0.069~\text{GeV}^2/c^2$, reported in the main article. One in about 250 steps in the chain, which results in 200 different sets of SDMEs, is provided. These values should be used instead of bootstrapping of the results, in order to estimate uncertainties of physics models fitted to this data. To assess how the uncertainties propagate to the model uncertainties, one should evaluate the model under scrutiny for each of the 200 different sets of SDMEs. Plotting all resulting lines in a single plot will create bands which reflect the influence of the uncertainties in the data on the model. This method has the great advantage that all correlations are accurately taken into account.