The Differential Cross-Section of the Reaction K- p --> anti-K0 n from 515-MeV/c to 956-MeV/c

Alston-Garnjost, M. ; Kenney, R.W. ; Pollard, D.L. ; et al.
Phys.Rev.D 17 (1978) 2226, 1978.
Inspire Record 121140 DOI 10.17182/hepdata.4517

The differential cross section for the charge-exchange reaction K−p→K¯0n has been measured at 22 incident momenta between 515 and 956 MeV/c. Experimental results and Legendre-polynomial fits to the data are presented.

25 data tables match query

No description provided.

No description provided.

No description provided.

More…

Backward $K^- p$ Elastic Scattering and 0-degree $\Sigma^- \pi^+$ Production

Alston-Garnjost, M. ; Hamilton, R.P. ; Kenney, R.W. ; et al.
Phys.Rev.D 21 (1980) 1191-1205, 1980.
Inspire Record 131715 DOI 10.17182/hepdata.24193

In this paper we report measurements of the backward K−p differential cross section at 49 momenta covering the momentum range 476-1084 MeV/c. The statistical precision achieved, typically 2.5%, is an order of magnitude better than previous measurements. The systematic errors for this reaction are about 1%. The differential cross section for the reaction K−p→Σ−π+ where the π+ emerges at 0° has also been measured at 32 momenta with comparable improvement in precision over previous experiments. A partial-wave analysis of the K¯N channels including the new K−p backward elastic data is presented.

2 data tables match query

No description provided.

No description provided.


Measurement of Differential Cross-Sections for Elastic K+ p Scattering in the Momentum Range 0.7-GeV/c to 1.9-GeV/c

Charles, B.J. ; Cowan, I.M. ; Edwards, T.R.M. ; et al.
Nucl.Phys.B 131 (1977) 7-53, 1977.
Inspire Record 126513 DOI 10.17182/hepdata.8361

Differential cross sections for elastic K + p scattering have been measured at nineteen momenta between 0.7 and 1.9 GeV/ c . The data represent between 10 thousand and 20 thousand elastic events at each momentum and cover a wide range of scattering angles ( −0.98 ≲ cos θ ∗ ≲ 0.95 ). A computer controlled system of scintillation counters and acoustic spark chambers was used to detect the elastic events. Various internal consistency checks indicate that the absolute normalization of the data is accurate to within 2–3%. The cross sections show a smooth transition from an isotropic angular distribution to a dominant forward peak over the range covered by the experiment. Phase-shift analyses including these results show little evidence for a direct-channel resonance, and fitting the results by t - and u -channel exchange processes alone gives a good fit.

19 data tables match query

No description provided.

No description provided.

No description provided.

More…