pi+- p differential cross sections at low energies.

Denz, H. ; Amaudruz, P. ; Brack, J.T. ; et al.
Phys.Lett.B 633 (2006) 209-213, 2006.
Inspire Record 699647 DOI 10.17182/hepdata.31620

Differential cross sections for pi- p and pi+ p elastic scattering were measured at five energies between 19.9 and 43.3 MeV. The use of the CHAOS magnetic spectrometer at TRIUMF, supplemented by a range telescope for muon background suppression, provided simultaneous coverage of a large part of the full angular range, thus allowing very precise relative cross section measurements. The absolute normalisation was determined with a typical accuracy of 5 %. This was verified in a simultaneous measurement of muon proton elastic scattering. The measured cross sections show some deviations from phase shift analysis predictions, in particular at large angles and low energies. From the new data we determine the real part of the isospin forward scattering amplitude.

12 data tables

Elastic PI- P cross section for incident kinetic energy 43.3 MeV for the rotated target data. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 43.3 MeV. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 37.1 MeV. Errors shown are statistical only.

More…

Measurement of pi- p ---> pi0 n in the vicinity of the eta threshold

Starostin, A. ; Prakhov, S. ; Nefkens, B.M.K. ; et al.
Phys.Rev.C 72 (2005) 015205, 2005.
Inspire Record 688197 DOI 10.17182/hepdata.25171

We report a new measurement of the differential cross section for π−p→π0n from pπ=649 to 752 MeV/c, which is around the opening of the η channel (685 MeV/c). Our data support the main features of the π−p charge-exchange differential cross sections generated by the SAID πN partial-wave analysis. The opening of the η channel has a clear effect on the shape of the excitation function for dσ(π−p→π0n), which is most noticeable in the backward direction.

9 data tables

Differential cross section for incident pion momentum 649, 654 and 657 MeV.

Differential cross section for incident pion momentum 661, 666 and 669 MeV.

Differential cross section for incident pion momentum 673, 678 and 681 MeV.

More…

Measurement of pi- p ---> eta n from threshold to p (pi-) = 747-MeV/c

Prakhov, S. ; Nefkens, B.M.K. ; Allgower, C.E. ; et al.
Phys.Rev.C 72 (2005) 015203, 2005.
Inspire Record 687736 DOI 10.17182/hepdata.25215

The differential cross section for η production in reaction π−p→ηn has been measured over the full angular range at seven incident π− beam momenta from threshold to pπ−=747 MeV/c using the Crystal Ball multiphoton spectrometer. The angular distributions are S wave dominated. At 10 MeV/c above threshold, a small D-wave contribution appears that interferes with the main S wave. The total η production cross section σtot is obtained by integration of dσ/dΩ. Starting at threshold, σtot rises rapidly, as expected for S-wave-dominated production. The features of the π−p→ηn cross section are strikingly similar to those of the SU(3) flavor-related process K−p→ηΛ. Comparison of the π−p→ηn reaction is made with η photoproduction.

3 data tables

Total cross sections.

Differential cross section for the 4 lowest beam momenta.

Differential cross section for the 3 highest beam momenta.


Measurement of pi- p --> pi0 pi0 n from threshold to p(pi-) 750-MeV/c.

The Crystal Ball collaboration Prakhov, S. ; Nefkens, B.M.K. ; Allgower, C.E. ; et al.
Phys.Rev.C 69 (2004) 045202, 2004.
Inspire Record 647544 DOI 10.17182/hepdata.25355

Reaction π−p→π0π0n has been measured with high statistics in the beam momentum range 270–750MeV∕c. The data were obtained using the Crystal Ball multiphoton spectrometer, which has 93% of 4π solid angle coverage. The dynamics of the π−p→π0π0n reaction and the dependence on the beam energy are displayed in total cross sections, Dalitz plots, invariant-mass spectra, and production angular distributions. Special attention is paid to the evaluation of the acceptance that is needed for the precision determination of the total cross section σt(π−p→π0π0n). The energy dependence of σt(π−p→π0π0n) shows a shoulder at the Roper resonance [i.e., the N(1440)12+], and there is also a maximum near the N(1520)32−. It illustrates the importance of these two resonances to the π0π0 production process. The Dalitz plots are highly nonuniform; they indicate that the π0π0n final state is dominantly produced via the π0Δ0(1232) intermediate state. The invariant-mass spectra differ much from the phase-space distributions. The production angular distributions are also different from the isotropic distribution, and their structure depends on the beam energy. For beam momenta above 550MeV∕c, the density distribution in the Dalitz plots strongly depends on the angle of the outgoing dipion system (or equivalently on the neutron angle). The role of the f0(600) meson (also known as the σ) in π0π0n production remains controversial.

5 data tables

Measured total cross section. Statistical errors only.

Differential angular distributions of the 2PI0 system for the LH2 data at beam momenta 355 to 472 MeV/c. Statistical errors only.

Differential angular distributions of the 2PI0 system for the LH2 data at beam momenta 550 to 678 MeV/c. Statistical errors only.

More…

Differential cross section of the pion nucleon charge-exchange reaction pi- p --> pi0 n in the momentum range from 148-MeV/c to 323-MeV/c.

The Crystal Ball collaboration Sadler, M.E. ; Kulbardis, A. ; Abaev, V. ; et al.
Phys.Rev.C 69 (2004) 055206, 2004.
Inspire Record 646714 DOI 10.17182/hepdata.31725

Measured values of the differential cross section for pion-nucleon charge exchange are presented at momenta 148, 174, 188, 212, 238, 271, 298, and 323 MeV/c, a region dominated by the Delta resonance. Complete angular distributions were obtained using the Crystal Ball detector at the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). Statistical uncertainties of the differential cross sections are typically 2-6%, exceptions being the results at the lowest momentum and at the most forward measurements of the five lowest momenta. We estimate the systematic uncertainties to be 3-6%.

3 data tables

The errors shown are statistical only.

The errors shown are statistical only.

The total charge-exchange reaction cross section as a function of pion momentum obtained by integrating the differential cross sections. The errors shown are the total and statistical errors.


Low-energy differential cross-sections of pion proton (pi+- p) scattering. 2: Phase shifts at T(pi) = 32.7-MeV, 45.1-MeV, and 68.6-MeV

Joram, C. ; Metzler, M. ; Jaki, J. ; et al.
Phys.Rev.C 51 (1995) 2159-2165, 1995.
Inspire Record 404659 DOI 10.17182/hepdata.25955

We report on measurements of the differential π±p cross section at pion energies Tπ=32.7, 45.1, and 68.6 MeV. The measurements, covering the angular range 25°≤θlab≤123°, have been carried out at the Paul-Scherrer-Institute (PSI) in Villigen, Switzerland, employing the magnet spectrometer LEPS. The absolute normalization of the π±p cross sections have been achieved by relating them to the electromagnetic cross sections of μ±12C scattering. The results are in agreement with those of our preceding measurements at Tπ=32.2 and 45.1 MeV insofar as they overlap with the region of the Coulomb nuclear interference investigated there. A comparison with the predictions of the Karlsruhe-Helsinki phase shift analysis KH80, which has formed the basis for the determination of the ‘‘experimental’’ σ term, reveals considerable deviations. These are most pronounced for the π+p cross sections at Tπ=32.7 and 45.1 MeV. Single energy partial wave fits result in S-wave contributions, which are about 1° lower in magnitude then those specified by the KH80 solution. The data at 68.6 MeV are in good agreement with the phase shift analysis.

3 data tables

Statistical and systematic errors are addet in quadrature.

Statistical and systematic errors are addet in quadrature.

Statistical and systematic errors are addet in quadrature.


Hidden Strangeness in the Proton? Determination of the Real Part of the Isospin Even - Forward Scattering Amplitude of Pion Nucleon Scattering at 54.3-{MeV}

Wiedner, U. ; Goring, K. ; Jaki, J. ; et al.
Phys.Rev.D 40 (1989) 3568-3581, 1989.
Inspire Record 287810 DOI 10.17182/hepdata.23079

The contradiction of the σ term of pion-nucleon scattering as deduced from the Karlsruhe-Helsinki phase shifts with the smaller value calculated by the chiral perturbation theory of QCD is well known. In an effort to clarify the discrepancy we have determined the real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering at a pion energy Tπ=54.3 MeV by measurement of the elastic scattering of positive and negative pions on protons in the Coulomb-nuclear interference region. The deduced value is in agreement with the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. The resulting large value of the σ term may be interpreted as being due to the influence of s¯s sea pairs even at large distances (small Q2) as previously suggested by the European Muon Collaboration measurement of deep-inelastic scattering of polarized muons on polarized protons.

1 data table

No description provided.


MEASUREMENT OF POLARIZATION PARAMETERS FOR THE PI- P ---> PI0 N CHARGE EXCHANGE SCATTERING FROM 1965-MEV/C TO 4220-MEV/C

Minowa, M. ; Adachi, T. ; Daigo, M. ; et al.
Nucl.Phys.B 294 (1987) 979-1000, 1987.
Inspire Record 255228 DOI 10.17182/hepdata.33402

Polarization parameters for the π − p → π 0 n charge exchange scattering have been measured at eight beam momenta between 1965 and 4220 MeV/ c using two different experimental set-ups. The angular range covered is −0.90 < cos θ π ∗ < 0.95 at the five momenta of 1965, 2168, 2360, 2566 and 2960 MeV/ c , where θ π ∗ is the emission angle of the π 0 meson in the c.m.s.. For three momenta of 2770, 3490 and 4220 MeV/ c , the measurements cover the forward angles of 0.1 < cos θ π ∗ < 1.0 . The results are compared with the predictions of π N partial wave analyses.

4 data tables

Polarisation measurements from SETUP1. Errors are statistical only.

Polarisation measurements from SETUP2. Errors are statistical only.

Legendre polynomial coefficients for fit to differential cross section data.

More…

MEASUREMENT OF DIFFERENTIAL CROSS-SECTIONS FOR THE PI- P ---> PI0 N CHARGE EXCHANGE SCATTERING FROM 1969-MEV/C TO 2965-MEV/C

Suzuki, Y. ; Adachi, T. ; Daigo, M. ; et al.
Nucl.Phys.B 294 (1987) 961-978, 1987.
Inspire Record 255227 DOI 10.17182/hepdata.33477

Precise measurements of the differential cross sections on the π − p→ π 0 n charge exchange scattering have been performed at six incident beam momenta of 1969, 2172, 2370, 2569, 2767 and 2965 MeV/ c covering a wide angular range of −0.95 < cos θ π ∗ < 0.95, where θ π ∗ is an emission angle of π 0 meson in the c.m.s. The results are compared with predictions of recent partial wave analyses.

2 data tables

Total cross sections obtained by fitting the Legendre polynomials to the DCS data.

Statistical errors only. Cos(theta) bin width is +- 0.025.


Determination of the Real Part of the Isospin Even Forward Scattering Amplitude of Pion Nucleon Scattering at 55-{MeV} as a Test of Low-energy Quantum Chromodynamics

Wiedner, U. ; Goring, K. ; Jaki, J. ; et al.
Phys.Rev.Lett. 58 (1987) 648-650, 1987.
Inspire Record 246624 DOI 10.17182/hepdata.20153

The real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering has been determined at a pion energy of Tπ=55 MeV by measurement of the elastic scattering of positive and negative pions on protons within the Coulomb-nuclear interference region. The value confirms the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. These phases have been used to determine the σ term of pion-nucleon scattering by means of dispersion relations, resulting in a value for σ which is in contradiction with chiral perturbation theory of QCD.

1 data table

PI- P cross sections normalised to the Coulomb cross section taken from the Karlesruhe-Helsinki phase shift analysis (R. Koch, E. Pietarinen (NP A336(80)331).