Elastic Scattering and Single Meson Production in Proton-Proton Collisions at 2.85 Bev

Smith, G.A. ; Courant, H. ; Fowler, E.C. ; et al.
Phys.Rev. 123 (1961) 2160-2167, 1961.
Inspire Record 47571 DOI 10.17182/hepdata.734

The Brookhaven National Laboratory twenty-inch liquid hydrogen bubble chamber was exposed to a monoenergetic beam of 2.85-Bev protons, elastically scattered from a carbon target in the internal beam of the Cosmotron. All two-prong events, excluding strange particle events, have been studied by the Yale High-Energy Group. The remaining interactions have been studied by the Brookhaven Bubble Chamber Group. Elastic scattering was found to be mostly pure diffraction scattering at center-of-mass angles up to about thirty-five degrees. Some phase shift and/or tapering of the proton edge was required to fit the data at larger angles. No polarization effects in the proton-carbon scattering were observed using hydrogen as an analyzer of polarized protons. Nucleonic isobar formation in the T=32, J=32 state was found to account for a large part of single pion production. High-orbital angular-momentum states were found to be greatly favored in single pion production. The isobar model of Lindenbaum and Sternheimer gave good agreement with the observed nucleon and pion energy spectra. No polarization or alignment effects were observed for the isobar assumed in this model.

3 data tables

No description provided.

No description provided.


Nucleon and Nuclear Cross Sections for Positive Pions and Protons above 1.4 Bev/c

Longo, Michael J. ; Moyer, Burton J. ;
Phys.Rev. 125 (1962) 701-713, 1962.
Inspire Record 46829 DOI 10.17182/hepdata.26791

Total (π+, p) and (p, p) cross sections in the momentum range 1.4 to 4.0 Bev/c are presented. These measurements, with an accuracy of approximately 2%, were made at the Berkeley Bevatron by using counter techniques. Pions were distinguished from protons by means of a gas-filled Čerenkov counter. The (π+, p) total cross section was found to be almost constant above 2.0 Bev/c at a value near 29 mb. The (p, p) cross section decreases gradually from 47.5 mb to 41.7 mb over the momentum range covered. Transmission measurements of π+-nucleus and p-nucleus cross sections in both good and poor geometry were made at 3.0 Bev/c. The results are compared with the predictions of the optical model. In contrast to most previous work at high energies, an essentially exact solution of the wave equation for a potential well with a diffuse edge was used. The values of the imaginary part of the optical potential that best fit the experimental data are in good agreement with the predicted values. No strong conclusion regarding the real part of the potential was possible. Absorption and total elastic scattering cross sections for Be, C, Al, and Cu are presented. The total elastic scattering cross sections from this experiment disagree with Wikner's for π−-nucleus scattering.

1 data table

No description provided.


K+ P ELASTIC SCATTERING AT 3.5-GeV/c AND 5.0-GeV/c

De Baere, W. ; Debaisieux, J. ; Dufour, J.P. ; et al.
Nuovo Cim.A 45 (1966) 885, 1966.
Inspire Record 50048 DOI 10.17182/hepdata.37572

The elastic scattering of K+ mesons on protons is studied at 3.5 and 5 GeV/c. The total elastic cross-sections are found to be (4.36±0.36) mb and (3.82±0.41) mb respectively. The differential elastic cross-sections, which exhibit characteristic diffraction peaks, are fitted by dσ/dt=(dσ/dt)0eαt, giving α=(3.85±0.12) and (4.70±0.21) (GeV/c)−2 for the two momenta respectively, with |t|⪝0.65 (GeV/c)2. The results are compared to those at neighbouring energies, giving some support to the presence of a real part of the forward scattering amplitude. The diffraction peak shows definite shrinking with increasing momenta. The data are examined in the light of models for high-energy scattering.

1 data table

No description provided.


Neutron proton elastic scattering from 1-GeV to 6-GeV.

Kreisler, M. ; Martin, F. ; Perl, Martin L. ; et al.
Phys.Rev.Lett. 16 (1966) 1217-1220, 1966.
Inspire Record 49861 DOI 10.17182/hepdata.3557

None

5 data tables

'1'. '2'. '3'.

No description provided.

No description provided.

More…

Polarization parameter in elastic proton proton scattering from 0.75-GeV to 2.84-GeV

Neal, Homer A. ; Longo, Michael J. ;
Phys.Rev. 161 (1967) 1374-1383, 1967.
Inspire Record 51386 DOI 10.17182/hepdata.6264

The polarization parameter in elastic proton-proton scattering has been measured at 0.75, 1.03, 1.32, 1.63, 2.24, and 2.84 GeV by employing a double-scattering technique. An external proton beam from the Brookhaven Cosmotron was focused on a 3 in.-long liquid-hydrogen target and the elastic recoil and scattered protons were detected in coincidence by scintillation counters. The polarization of the recoil beam was determined from the azimuthal asymmetry exhibited in its scattering from a carbon target. This asymmetry was measured by a pair of scintillation-counter telescopes which symmetrically viewed the carbon target. The analyzing power of this system was previously determined in an independent calibration experiment employing a 40%-polarized proton beam at the Carnegie Institute of Technology synchrocyclotron. False asymmetries were cancelled to a high order by periodically rotating the analyzer 180° about the recoil beam line. Spark chambers were utilized to obtain the spatial distribution of the beam as it entered the analyzer; this information allowed an accurate determination of the corrections necessary to compensate for any misalignment of the axis of the analyzer relative to the incident-beam centroid. Values of the polarization parameter as a function of the center-of-mass scattering angle are given for each incident beam energy. The predictions of the Regge theory for polarization in elastic proton-proton scattering and recently published phase-shift solutions are compared with the experimental results. Surprisingly good agreement with the Regge predictions is found despite the low energies involved.

4 data tables

'ALL'.

No description provided.

No description provided.

More…

Anti-p-p backward elastic scattering from 0.7 to 2.16 gev/c

Yoh, J.K. ; Barish, B.C. ; Nicholson, H. ; et al.
Phys.Rev.Lett. 23 (1969) 506-510, 1969.
Inspire Record 56393 DOI 10.17182/hepdata.3399

Elastic scattering of p¯ on p has been studied for cosθc.m. between -0.88 and -1.0 and Plab(p¯) between 0.70 and 2.16 GeV/c. The momentum dependence of the cross section shows a sharp dip at 0.9 GeV/c and a broad peaking around 1.4 GeV/c. The possibility of the peak resulting from direct formation of boson resonances has been studied. Alternatively, a diffraction model agrees qualitatively with our data and other elastic data at different angles.

7 data tables

'1'. '2'. '3'.

No description provided.

No description provided.

More…

Inelastic electron proton scattering at high momentum transfers

Albrecht, W. ; Brasse, F.W. ; Dorner, H. ; et al.
Phys.Lett.B 28 (1968) 225-228, 1968.
Inspire Record 56843 DOI 10.17182/hepdata.29077

Inelastic electron proton scattering has been measured by detecting the scattered electron, thus obtaining the total absorption cross section for virtual photons. Two complete spectra from threshold to a pion nucleon mass of W = 2 GeV were taken at θ e = 48.3° and fixed primary energies of 3.963 GeV and 5.159 GeV, respectively, corresponding to a momentum transfer at the first resonance of q 2 = 3.98 (GeV/ c ) 2 and q 2 = 5.84 (GeV/ c ) 2 . In addition, a measurement at θ e = 47.9° and at a primary energy of 3.306 GeV in the region of the first resonance is reported.

1 data table

No description provided.


NEUTRON - PROTON ELASTIC SCATTERING FROM 2-GeV/c TO 7-GeV/c

Perl, Martin L. ; Cox, Jack ; Longo, Michael J. ; et al.
Phys.Rev.D 1 (1970) 1857, 1970.
Inspire Record 54902 DOI 10.17182/hepdata.69198

Direct measurements were made of neutron-proton elastic scattering differential cross sections at high energies. A neutron beam with a continuous momentum spectrum between 1.2 and 6.7 GeV/c was scattered off a liquid hydrogen target, and spark chambers were used to determine the neutron scattering angle and, in a proton spectrometer, to measure the momentum and scattering angle of the recoil proton. Differential cross sections are presented over the incident neutron momentum range in intervals of the order of 0.5-GeV/c wide. The cross sections have an exponential peak in the forward direction and then flatten and become isotropic about the 90° c.m. scattering angle. At larger angles, the cross sections again rise towards the expected charge-exchange peak, which was not within the range of this experiment. There is little evidence of any other structure in the cross section. Values are presented for the slope of the diffraction peak, and comparisons are made between these slopes, and the 90° c.m. cross sections, for pp and np elastic scattering. The results presented here differ from those previously reported because of an error in a Monte Carlo calculation and in the availability of improved data on the real part of the np elastic scattering amplitude. At 5 GeV/c, a direct comparison of pp and np data allows the I=0 differential cross section to be extracted. The np data have been fitted in powers of cosθc.m. for |cosθc.m.|<0.8 for each energy range.

9 data tables

No description provided.

No description provided.

No description provided.

More…

MEASUREMENT OF THE RATIO OF THE PROTON FORM-FACTORS, G(E) / G(M), AT HIGH MOMENTUM TRANSFERS AND THE QUESTION OF SCALING

Litt, J. ; Buschhorn, G. ; Coward, D.H. ; et al.
Phys.Lett.B 31 (1970) 40-44, 1970.
Inspire Record 54895 DOI 10.17182/hepdata.28767

Electron-proton elastic scattering cross sections have been measured at the Stanford Linear Accelerator Center at four-momentum transfers squared (q 2 ) of 1.0, 1.5, 2.0, 2.5and 3.75 (GeV/ c ) 2 . The angular distributions at q 2 = 2.5 and 3.75 (GeV/ c ) 2 are sufficient to provide values of the ratio G E / G M independent of the results from other laboratories. Our results are compatible with scaling, G E (q 2 ) = G M (q 2 )/ μ , within the experimental errors.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Observation of k(l) - k(s) regeneration from liquid hydrogen. aachen-cern-turin collaboration,

Darriulat, P. ; Grosso, C. ; Holder, M. ; et al.
Phys.Lett.B 33 (1970) 433-437, 1970.
Inspire Record 69387 DOI 10.17182/hepdata.28718

The K L K S transmission regeneration of a K L beam traversing a liquid hydrogen target has been observed over the momentum interval 3.0–6.0 GeV/ c . Results are in good agreement with predictions based on dispersion relations.

2 data tables

Regeneration amplitude.

No description provided.