Measurements of dijet azimuthal decorrelations in pp collisions at sqrt(s) = 7 TeV using the CMS detector at the CERN LHC are presented. The analysis is based on an inclusive dijet event sample corresponding to an integrated luminosity of 2.9 inverse picobarns. The results are compared to predictions from perturbative QCD calculations and various Monte Carlo event generators. The dijet azimuthal distributions are found to be sensitive to initial-state gluon radiation.
A search for narrow resonances in the dijet mass spectrum is performed using data corresponding to an integrated luminosity of 2.9 inverse pb collected by the CMS experiment at the LHC. Upper limits at the 95% confidence level (CL) are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, or gluon-gluon pairs. The data exclude new particles predicted in the following models at the 95% CL: string resonances, with mass less than 2.50 TeV, excited quarks, with mass less than 1.58 TeV, and axigluons, colorons, and E_6 diquarks, in specific mass intervals. This extends previously published limits on these models.
Jet charge is an estimator of the electric charge of a quark, antiquark, or gluon initiating a jet. It is based on the momentum-weighted sum of the electric charges of the jet constituents. Measurements of three charge observables of the leading jet in transverse momentum pT are performed with dijet events. The analysis is carried out with data collected by the CMS experiment at the CERN LHC in proton-proton collisions at sqrt(s) = 8 TeV corresponding to an integrated luminosity of 19.7 inverse femtobarns. The results are presented as a function of the pT of the leading jet and compared to predictions from leading- and next-to-leading-order event generators combined with parton showers. Measured jet charge distributions, unfolded for detector effects, are reported, which expand on previous measurements of the jet charge average and standard deviation in pp collisions.
Dijet angular distributions are measured over a wide range of dijet invariant masses in pp collisions at sqrt(s) = 7 TeV, at the CERN LHC. The event sample, recorded with the CMS detector, corresponds to an integrated luminosity of 36 inverse picobarns. The data are found to be in good agreement with the predictions of perturbative QCD, and yield no evidence of quark compositeness. With a modified frequentist approach, a lower limit on the contact interaction scale for left-handed quarks of Lambda = 5.6 TeV (6.7 TeV) for destructive (constructive) interference is obtained at the 95% confidence level.
A search for quark compositeness using dijet angular distributions from pp collisions at sqrt(s) = 7 TeV is presented. The search has been carried out using a data sample corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS experiment at the LHC. Normalized dijet angular distributions have been measured for dijet invariant masses from 0.4 TeV to above 3 TeV and compared with a variety of contact interaction models, including those which take into account the effects of next-to-leading-order QCD corrections. The data are found to be in agreement with the predictions of perturbative QCD, and lower limits are obtained on the contact interaction scale, ranging from 7.5 up to 14.5 TeV at 95% confidence level.
A search is presented for extra spatial dimensions, quantum black holes, and quark contact interactions in measurements of dijet angular distributions in proton-proton collisions at sqrt(s) = 13 TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 2.6 inverse femtobarns. The distributions are found to be in agreement with predictions from perturbative quantum chromodynamics that include electroweak corrections. Limits for different contact interaction models are obtained in a benchmark model, valid to next-to-leading order in QCD, in which only left-handed quarks participate, quark contact interactions are excluded up to a scale of 11.5 or 14.7 TeV for destructive or constructive interference, respectively. The production of quantum black holes is excluded for masses below 7.8 or 5.3 TeV, depending on the model. The lower limits for the scales of virtual graviton exchange in the Arkani-Hamed--Dimopoulos--Dvali model of extra spatial dimensions are in the range 7.9-11.2 TeV, and are the most stringent set of limits available.
The cross section for dijet production in pp collisions at sqrt(s) = 7 TeV is presented as a function of xi, a variable that approximates the fractional momentum loss of the scattered proton in single-diffractive events. The analysis is based on an integrated luminosity of 2.7 inverse nanobarns collected with the CMS detector at the LHC at low instantaneous luminosities, and uses events with jet transverse momentum of at least 20 GeV. The dijet cross section results are compared to the predictions of diffractive and nondiffractive models. The low-xi data show a significant contribution from diffractive dijet production, observed for the first time at the LHC. The associated rapidity gap survival probability is estimated.
A measurement of the double-differential inclusive dijet production cross section in proton-proton collisions at sqrt(s)=7 TeV is presented as a function of the dijet invariant mass and jet rapidity. The data correspond to an integrated luminosity of 36 inverse picobarns, recorded with the CMS detector at the LHC. The measurement covers the dijet mass range 0.2 TeV to 3.5 TeV and jet rapidities up to |y|=2.5. It is found to be in good agreement with next-to-leading-order QCD predictions.
Measurements of inclusive jet and dijet production cross sections are presented. Data from LHC proton-proton collisions at $\sqrt{s}$ = 7 TeV, corresponding to 5.0 inverse femtobarns of integrated luminosity, have been collected with the CMS detector. Jets are reconstructed up to rapidity 2.5, transverse momentum 2 TeV, and dijet invariant mass 5 TeV, using the anti-k$_t$ clustering algorithm with distance parameter R = 0.7. The measured cross sections are corrected for detector effects and compared to perturbative QCD predictions at next-to-leading order, using five sets of parton distribution functions.
Measurements are presented of the single-diffractive dijet cross section and the diffractive cross section as a function of the proton fractional momentum loss $\xi$ and the four-momentum transfer squared $t$. Both processes pp$\to$pX and pp$\to$Xp, ie with the proton scattering to either side of the interaction point, are measured, where X includes at least two jets; the results of the two processes are averaged. The analyses are based on data collected simultaneously with the CMS and TOTEM detectors at the LHC in proton-proton collisions at $\sqrt{s}$= 8 TeV during a dedicated run with $\beta^{\ast} =$ 90 m at low instantaneous luminosity and correspond to an integrated luminosity of 37.5 nb$^{-1}$. The single-diffractive dijet cross section $\sigma^\mathrm{pX}_{\mathrm{jj}}$, in the kinematic region $\xi \lt$ 0.1, 0.03 $\lt |$t$| \lt 1$ GeV$^2$, with at least two jets with transverse momentum $p_\mathrm{T} >$ 40 GeV, and pseudorapidity $|\eta| \lt$ 4.4, is 21.7$\pm$0.9 (stat)$^{+3.0}_{-3.3}$ (syst) $\pm$ 0.9 (lum) nb. The ratio of the single-diffractive to inclusive dijet yields, normalised per unit of $\xi$, is presented as a function of $x$, the longitudinal momentum fraction of the proton carried by the struck parton. The ratio in the kinematic region defined above, for $x$ values in the range $-$2.9 $\leq \log_{10} x \leq$$-$1.6, is $R = (\sigma^\mathrm{pX}_{\mathrm{jj}}/\Delta\xi)/\sigma_{\mathrm{jj}} =$ 0.025$\pm$0.001 (stat) $\pm$ 0.003 (syst), where $\sigma^\mathrm{pX}_{\mathrm{jj}}$ and $\sigma_{\mathrm{jj}}$ are the single-diffractive and inclusive dijet cross sections, respectively. The results are compared with predictions from models of diffractive and nondiffractive interactions. Monte Carlo predictions based on the HERA diffractive parton distribution functions agree well with the data when corrected for the effect of soft rescattering between the spectator partons.