First measurement of beam-recoil observables C(x) and C(z) in hyperon photoproduction.

The CLAS collaboration Bradford, R.K. ; Schumacher, R.A. ; Adams, G. ; et al.
Phys.Rev.C 75 (2007) 035205, 2007.
Inspire Record 732402 DOI 10.17182/hepdata.31496

Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\vec\gamma + p \to K^+ + \vec\Lambda$ and $\vec\gamma + p \to K^+ + \vec\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\cos\theta_{K^+}^{c.m.}< +0.95$. For the $\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\it total} $\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.

34 data tables

Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.032 GeV and W = 1.679 GeV.

Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.132 GeV and W = 1.734 GeV.

Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.232 GeV and W = 1.787 GeV.

More…

Polarization transfer in proton Compton scattering at high momentum transfer.

The Jefferson Lab Hall A collaboration Hamilton, D.J. ; Mamyan, V.H. ; Aniol, K.A. ; et al.
Phys.Rev.Lett. 94 (2005) 242001, 2005.
Inspire Record 660894 DOI 10.17182/hepdata.19389

Compton scattering from the proton was investigated at s=6.9 (GeV/c)**2 and \t=-4.0 (GeV/c)**2 via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in excellent agreement with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton and in disagreement with a prediction of pQCD based on a two-gluon exchange mechanism.

1 data table

Polarization transfer parameters.


Cross section and complete set of proton spin observables in p polarized d elastic scattering at 250 MeV

Hatanaka, K. ; Shimizu, Y. ; Hirooka, D. ; et al.
Phys.Rev.C 66 (2002) 044002, 2002.
Inspire Record 599502 DOI 10.17182/hepdata.25292

The angular distributions of the cross section, the proton analyzing power, and all proton polarization transfer coefficients of p→d elastic scattering were measured at 250 MeV. The range of center-of-mass angles was 10°–165° for the cross section and the analyzing power, and about 10°–95° for the polarization transfer coefficients. These are the first measurements of a complete set of proton polarization observables for p→d elastic scattering at intermediate energies. The present data are compared with theoretical predictions based on exact solutions of the three-nucleon Faddeev equations and modern realistic nucleon-nucleon potentials combined with three-nucleon forces (3NF), namely, the Tucson-Melbourne (TM) 2π-exchange model, a modification thereof (TM′) closer to chiral symmetry, and the Urbana IX model. Large effects of the three-nucleon forces are predicted. The inclusion of the three-nucleon forces gives a good description of the cross section at angles below the minimum. However, appreciable discrepancies between the data and predictions remain at backward angles. For the spin observables the predictions of the TM 3NF model deviate strongly from the other two 3NF models, which are close together, except for Kyy′. In the case of the analyzing power all 3NF models fail to describe the data at the upper half of the angular range. In the restricted measured angular range the polarization transfer coefficients are fairly well described by the TM′ and Urbana IX 3NF models, whereas the TM 3NF model mostly fails. The transfer coefficient Kyy′ is best described by the Urbana IX but the theoretical description is still insufficient to reproduce the experimental data. These results call for a better understanding of the spin structure of the three-nucleon force and very likely for a full relativistic treatment of the three-nucleon continuum.

2 data tables

Cross section and analyzing power measurements.

Proton polarization transfer coefficients.


Measurement of spin correlation parameters A(NN), A(SS), and A(SL) at 2.1-GeV in proton proton elastic scattering.

Bauer, F. ; Bisplinghoff, J. ; Busser, K. ; et al.
Phys.Rev.Lett. 90 (2003) 142301, 2003.
Inspire Record 594512 DOI 10.17182/hepdata.31721

At the Cooler Synchrotron COSY/J\ulich spin correlation parameters in elastic proton-proton (pp) scattering have been measured with a 2.11 GeV polarized proton beam and a polarized hydrogen atomic beam target. We report results for A$_{NN}$, A$_{SS}$, and A_${SL}$ for c.m. scattering angles between 30$^o$ and 90$^o$. Our data on A$_{SS}$ -- the first measurement of this observable above 800 MeV -- clearly disagrees with predictions of available of pp scattering phase shift solutions while A$_{NN}$ and A_${SL}$ are reproduced reasonably well. We show that in the direct reconstruction of the scattering amplitudes from the body of available pp elastic scattering data at 2.1 GeV the number of possible solutions is considerably reduced.

1 data table

Spin correlation parameters.


Complete set of precise deuteron analyzing powers at intermediate energies: Comparison with modern nuclear force predictions

Sekiguchi, K. ; Sakai, H. ; Witaa, H. ; et al.
Phys.Rev.C 65 (2002) 034003, 2002.
Inspire Record 583095 DOI 10.17182/hepdata.25427

Precise measurements of deuteron vector and tensor analyzing powers Ayd, Axx, Ayy, and Axz in d−p elastic scattering were performed via 1H(d→,d)p and 1H(d→,p)d reactions at three incoming deuteron energies of Edlab=140, 200, and 270 MeV. A wide range of center-of-mass angles from ≈10° to 180° was covered. The cross section was measured at 140 and 270 MeV at the same angles. These high precision data were compared with theoretical predictions based on exact solutions of three-nucleon Faddeev equations and modern nucleon-nucleon potentials combined with three-nucleon forces. Three-body interactions representing a wide range of present day models have been used: the Tucson-Melbourne 2π-exchange model, a modification thereof closer to chiral symmetry, the Urbana IX model, and a phenomenological spin-orbit ansatz. Large three-nucleon force effects are predicted, especially at the two higher energies. However, only some of them, predominantly dσ/dΩ and Ayd, are supported by the present data. For tensor analyzing powers the predicted effects are in drastic conflict to the data, indicating defects of the present day three-nucleon force models.

8 data tables

Angular distribution for DEUT P elastic scattering at EKIN of 140 MeV with the SMART spectrograph.

Angular distribution for DEUT P elastic scattering at EKIN of 270 MeV with the D-room polarimeter.

Angular distribution for DEUT P elastic scattering at EKIN of 270 MeV with the SMART spectrograph.

More…

Angular dependence of the p p elastic scattering spin correlation parameter A(00nn) between 0.8 and 2.8 GeV: Results for 1.80-GeV to 2.24-GeV

Allgower, C.E. ; Ball, J. ; Barabash, L.S. ; et al.
Phys.Rev.C 62 (2000) 064001, 2000.
Inspire Record 539075 DOI 10.17182/hepdata.25464

Measurements at 19 beam kinetic energies between 1795 and 2235 MeV are reported for the pp elastic scattering spin correlation parameter A00nn=ANN=CNN. The c.m. angular range is typically 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters. These results are compared to previous data from Saturne II and elsewhere.

21 data tables

Measured values of CNN at EKIN 1795 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.110.

Measured values of CNN at EKIN 1845 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.073.

Measured values of CNN at EKIN 1935 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.095.

More…

Zero-degree differential cross-sections and DNN values for the O-17, O-18 (,) F-17, F-18 reactions at E(p) = 118 MeV

van Heerden, I.J. ; Palarczyk, M. ; Wang, X. ; et al.
Phys.Rev.C 59 (1999) 1488-1496, 1999.
Inspire Record 516334 DOI 10.17182/hepdata.25605

We present zero-degree differential cross sections and transverse spin-transfer coefficients DNN(0°) for the 17,18O(p→,n→)17,18F reactions at Ep=118 MeV. For the transition to the 17F(g.s.) to which several multipoles contribute, the measured DNN(0°)=−0.13±0.05 is used to separate the Fermi and Gamow-Teller contributions at 0°. The empirical Gamow-Teller strengths and the Fermi strengths are employed to estimate the solar neutrino absorption cross section in 17O and 18O.

2 data tables

No description provided.

No description provided.


Measurement of the anti-p p ---> anti-lambda Lambda and anti-p p ---> Antisigma0 Lambda + c.c. reactions at 1.726-GeV/c and 1.771-GeV/c

Barnes, P.D. ; Franklin, G. ; Quinn, B. ; et al.
Phys.Rev.C 54 (1996) 2831-2842, 1996.
Inspire Record 433023 DOI 10.17182/hepdata.25800

Interest in the production of hyperon-antihyperon pairs following antiproton-proton annihilation stems largely from attempts to understand the nature of flavor production. To date the major focus of both the experimental and the theoretical effort has been on the p¯p→Λ¯Λ reaction. In this paper, we present data on the complementary channels p¯p→Σ¯0Λ and p¯p→Λ¯Σ0. Events from the kinematically similar p¯p→Λ¯Λ reaction were obtained in parallel. The procedure to distinguish these three separate reactions is described and results for all channels are presented. These include the total and differential cross sections, hyperon polarizations, and spin correlation coefficients. Data were obtained at incident antiproton lab momenta of 1.726 and 1.771 GeV/c which correspond to excess kinetic energies in the p¯p→Λ¯Σ0+c.c. reaction of 26 and 40 MeV, respectively, above threshold. Comparisons are made to earlier work at similar excess energies in the p¯p→Λ¯Λ channel. The low-energy regime has been highlighted in this experiment to reduce the complexity in the theoretical analysis. © 1996 The American Physical Society.

7 data tables

No description provided.

Axis error includes +- 2.3/2.3 contribution.

Axis error includes +- 2.3/2.3 contribution.

More…

Measurement of the spin correlation parameters A(00kk) and A(00sk) in n p elastic scattering at SATURNE-II

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Nucl.Phys.A 574 (1994) 697-715, 1994.
Inspire Record 383127 DOI 10.17182/hepdata.36564

We present a total of 191 and 203 data points of the elastic neutron-protonspin correlation parameters A ookk and A oosk , respectively. Both observables were measured in a large angular interval. The observable A ookk was measured from 0.312 to 1.10 GeV and A oosk from 0.80 to 1.10 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the polarized Saclay frozen-spin proton target. The beam polarization was oriented either along the beam direction or sideways, the target polarization was oriented longitudinally. Data are compared with phase-shift analyses predictions and with the PSI, LAMPF and SATURNE II results. Present results provide an important contribution to any future theoretical or phenomenological analysis.

14 data tables

No description provided.

No description provided.

No description provided.

More…

Angular dependence of the spin correlation parameter A(oonn) in n p elastic scattering between 0.8-GeV and 1.1-GeV

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Nucl.Phys.A 559 (1993) 511-525, 1993.
Inspire Record 33733 DOI 10.17182/hepdata.36583

We present a total of 323 data points of the spin correlation parameter A oonn (np) in a large angular interval at eight energies between 0.8 and 1.1 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the polarized Saclay frozen-spin proton target. The present data are the first existing results above 0.8 GeV.

9 data tables

No description provided.

No description provided.

No description provided.

More…