We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.
The rate of antideuteron production from the decay of UPSILON(3S).
The rate of antideuteron production from the decay of UPSILON(2S).
The rate of antideuteron production from the decay of UPSILON(1S).
Using a data sample with a total integrated luminosity of 10.0 pb$^{-1}$ collected at center-of-mass energies of 2.6, 3.07 and 3.65 GeV with BESII, cross sections for $e^+e^-$ annihilation into hadronic final states ($R$ values) are measured with statistical errors that are smaller than 1%, and systematic errors that are about 3.5%. The running strong interaction coupling constants $\alpha_s^{(3)}(s)$ and $\alpha_s^{(5)}(M_Z^2)$ are determined from the $R$ values.
R values.
Using the CLEO-c detector at the Cornell Electron Storage Ring, we have measured inclusive and exclusive cross sections for the production of D+, D0 and Ds+ mesons in e+e- annihilations at thirteen center-of-mass energies between 3.97 and 4.26 GeV. Exclusive cross sections are presented for final states consisting of two charm mesons (DD, D*D, D*D*, Ds+Ds-, Ds*+Ds-, and Ds*+Ds*-) and for processes in which the charm-meson pair is accompanied by a pion. No enhancement in any final state is observed at the energy of the Y(4260).
Exclusive cross section for two body neutral non-strange charm mesons.
Exclusive cross section for two body charged non-strange charm mesons.
Exclusive cross section for two body strange charm mesons.
Using the CLEO III detector, we measure absolute cross sections for e+e- --> hadrons at seven center-of-mass energies between 6.964 and 10.538 GeV. The values of R, the ratio of hadronic and muon pair production cross sections, are determined within 2% total r.m.s. uncertainty.
Measured values of R as a function of CM energy. The first DSYS error is the correlated uncertainty and the second is the uncorrelated.
Using the BES-II detector at the BEPC Collider, we measured the lowest order cross sections and the $R$ values ($R=\sigma^0_{e^+e^- \to {\rm hadrons}}/\sigma^0_{e^+e^- \to \mu^+\mu^-}$) for inclusive hadronic event production at the center-of-mass energies of 3.650 GeV, 3.6648 GeV and 3.773 GeV. The results lead to $\bar R_{uds}=2.224\pm 0.019\pm 0.089$ which is the average of these measured at 3.650 GeV and 3.6648 GeV, and $R=3.793\pm 0.037 \pm 0.190$ at $\sqrt{s}=3.773$ GeV. We determined the lowest order cross section for $\psi(3770)$ production to be $\sigma^{\rm B}_{\psi(3770)} = (9.575\pm 0.256 \pm 0.813)~{\rm nb}$ at 3.773 GeV, the branching fractions for $\psi(3770)$ decays to be $BF(\psi(3770) \to D^0\bar D^0)=(48.9 \pm 1.2 \pm 3.8)%$, $BF(\psi(3770) \to D^+ D^-)=(35.0 \pm 1.1 \pm 3.3)%$ and $BF(\psi(3770) \to D\bar{D})=(83.9 \pm 1.6 \pm 5.7)%$, which result in the total non-$D\bar D$ branching fraction of $\psi(3770)$ decay to be $BF(\psi(3770) \to {\rm non}-D\bar D)=(16.1 \pm 1.6 \pm 5.7)%$.
The measured (uncorrected) cross sections.
Lowest order cross sections (corrected for radiative and vacuum polarization effects).. The first DSYS error is the point-to-point systematic error and the secondis the common systematic error.
The Ruds value obtained by averaging the first two energy points.. The first error is the combined statistical and point-to-point systematic error and the DSYS error is the common systematic error.
This paper presents DELPHI measurements and interpretations of cross-sections, forward-backward asymmetries, and angular distributions, for the e+e- -> ffbar process for centre-of-mass energies above the Z resonance, from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are consistent with the predictions of the Standard Model and are used to study a variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering and several models which include physics beyond the Standard Model: the exchange of Z' bosons, contact interactions between fermions, the exchange of gravitons in large extra dimensions and the exchange of sneutrino in R-parity violating supersymmetry.
Measured cross sections and forward-backward asymmetries for non-radiative E+ E- --> E+ E- events.
Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 189 GeV.
Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 192 GeV.
Hadron production and lepton-pair production in e+e- collisions are studied with data collected with the L3 detector at LEP at centre-of-mass energies sqrt{s}=192-208GeV. Using a total integrated luminosity of 453/pb, 36057 hadronic events and 12863 lepton-pair events are selected. The cross sections for hadron production and lepton-pair production are measured for the full sample and for events where no high-energy initial-state-radiation photon is emitted prior to the collisions. Lepton-pair events are further investigated and forward-backward asymmetries are measured. Finally, the differential cross sections for electron-positron pair-production is determined as a function of the scattering angle. An overall good agreement is found with Standard Model predictions.
Measured hadron cross section for the inclusive data sample.
Measured hadron cross section for the high-energy data sample.
Measured MU+ MU- cross section for the inclusive data sample.
We have studied hadronic events from e+e- annihilation data at centre-of-mass energies from 91 to 209 GeV. We present distributions of event shape observables and their moments at each energy and compare with QCD Monte Carlo models. From the event shape distributions we extract the strong coupling alpha_s and test its evolution with energy scale. The results are consistent with the running of alpha_s expected from QCD. Combining all data, the value of alpha_s(M_Z) is determined to be alpha_s(M_Z) = 0.1191 +- 0.0005 (stat.) +- 0.0010 (expt.) +- 0.0011 (hadr.) +- 0.0044 (theo.). The energy evolution of the moments is also used to determine a value of alpha_s with slightly larger errors: alpha_s(M_Z) = 0.1223 +- 0.0005 (stat.) +- 0.0014 (expt.) +- 0.0016 (hadr.) +0.0054 -0.0036 (theo.).
Measured normalized differential distribution for 1-THRUST.
Measured normalized differential distribution for HEAVY-JET-MASS.
Measured normalized differential distribution for C-PARAMETER.
The cross section of W-boson pair-production is measured with the L3 detector at LEP. In a data sample corresponding to a total luminosity of 629.4/pb, collected at centre-of-mass energies ranging from 189 to 209 GeV, 9834 four-fermion events with W bosons decaying into hadrons or leptons are selected. The total cross section is measured with a precision of 1.4 % and agrees with the Standard Model expectation. Assuming charged-lepton universality, the branching fraction for hadronic W-boson decays is measured to be: Br(W-->hadrons) = 67.50 +- 0.42 (stat.) +- 0.30(syst.) %, in agreement with the Standard Model. Differential cross sections as a function of the W- production angle are also measured for the semi-leptonic channels qqev and qqmv.
Measured cross section for the process E+ E- --> LEPTON NU LEPTON NU.
Measured cross section for the process E+ E- --> QUARK QUARKBAR ELECTRON NEUTRINO.
Measured cross section for the process E+ E- --> QUARK QUARKBAR MUON NEUTRINO.
In this Report, QCD results obtained from a study of hadronic event structure in high energy e^+e^- interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 GeV to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, \alpha_s, from hadronic event shapes and the study of effects of soft gluon coherence through charged particle multiplicity and momentum distributions.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 130.1 GeV.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 136.1 GeV.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 161.3 GeV.