The Forward - backward asymmetry of e+ e- ---> b anti-b and e+ e- ---> c anti-c using leptons in hadronic Z0 decays

The OPAL collaboration Acton, P.D. ; Akers, R. ; Alexander, G. ; et al.
Z.Phys.C 60 (1993) 19-36, 1993.
Inspire Record 356097 DOI 10.17182/hepdata.14320

The forward-backward asymmetries of$$e^ + e^ - \to Z^0 \to b\bar b and e^ + e^ - \to Z^0 \to c\bar c$$

5 data tables match query

Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit, neglecting the effects of B0-BBAR0 mixing.

Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit and correcting for B0-BBAR0 mixing. The second systematic error is due to the uncertainty of the mixing factor.

Measurement of the asymmetry in c-quark production on the Z0 peak using a two parameter fit.

More…

Collins asymmetries in inclusive charged $KK$ and $K\pi$ pairs produced in $e^+e^-$ annihilation

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 92 (2015) 111101, 2015.
Inspire Record 1377201 DOI 10.17182/hepdata.73750

We present measurements of Collins asymmetries in the inclusive process $e^+e^- \rightarrow h_1 h_2 X$, $h_1h_2=KK,\, K\pi,\, \pi\pi$, at the center-of-mass energy of 10.6 GeV, using a data sample of 468 fb$^{-1}$ collected by the BaBar experiment at the PEP-II $B$ factory at SLAC National Accelerator Center. Considering hadrons in opposite thrust hemispheres of hadronic events, we observe clear azimuthal asymmetries in the ratio of unlike- to like-sign, and unlike- to all charged $h_1 h_2$ pairs, which increase with hadron energies. The $K\pi$ asymmetries are similar to those measured for the $\pi\pi$ pairs, whereas those measured for high-energy $KK$ pairs are, in general, larger.

6 data tables match query

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{2}/(1+\cos^2\theta_{2})$ is summarized, calculated in the RF0 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for $K\pi$ hadron pairs. In the first column, the $z$ bins and their respective mean values for the hadron ($K$ or $\pi$) in one hemisphere are reported; in the following column, the same variables for the second hadron ($K$ or $\pi$) are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $K\pi$ pair and dividing by the number of $K\pi$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

More…

Analysis of Z0 couplings to charged leptons

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 247 (1990) 458-472, 1990.
Inspire Record 297139 DOI 10.17182/hepdata.29630

The couplings of the Z 0 to charged leptons are studied using measurements of the lepton pair cross sections and forward-backward asymmetries at centre of mass energies near to the mass of the Z 0 . The data are consistent with lepton universality. Using a parametrisation of the lepton pair differential cross section which assumes that the Z 0 has only vector and axial couplings to leptons, the charged leptonic partial decay width of the Z 0 is determined to be Г ol+ol− = 83.1±1.9 MeV and the square of the product of the effective axial vector and vector coupling constants of the Z 0 to charged leptons to be a ̌ 2 ol v ̌ 2 ol = 0.0039± 0.0083 , in agreement with the standard model. A parametrisation in the form of the improved Born approximation gives effective leptonic axial vector and vector coupling constants a ̌ 2 ol = 0.998±0.024 and v ̌ 2 ol = 0.0044±0.0083 . In the framework of the standard model, the values of the parameters ϱ z and sin 2 θ w are found to be 0.998±0.024 and 0.233 +0.045 −0.012 respectively. Using the relationship in the minimal standard model between ϱ z and sin 2 θ w , the results sin 2 θ SM w = 0.233 +0.007 −0.006 is obtained. Our previously published measurement of the ratio of the hadronic to the leptonic partial width of the Z 0 is update: R z = 21.72 +0.71 −0.65 .

3 data tables match query

Forward-backward asymmetry corrected for kinematic cuts. Errors have systematics folded.

Forward-backward asymmetry. Statistical errors only.

Forward-backward asymmetry. Statistical errors only.


Spin asymmetries from O-16(gamma(pol.),p pi-) near Delta resonance energies

Hicks, K. ; Baghaei, H. ; Caracappa, A. ; et al.
Phys.Rev.C 55 (1997) R12-R15, 1997.
Inspire Record 456890 DOI 10.17182/hepdata.25766

Spin asymmetries for the 16O(γ→,pπ−) reaction are reported for incident photon energies of 293 ± 20 MeV, proton angles ranging from 28° to 140° (lab), and pion angles of 35° to 115°. The data are compared with calculations in a quasifree plane-wave impulse approximation model. This model is in good agreement with the data at small momentum transfer q, but does not follow the trend of the data at large q. Sensitivity to the Δ-nucleus potential and to modification of the Δ lifetime from nuclear medium effects are explored using a simple modification of the Δ propagator in the calculations.

6 data tables match query

The data are extracted from the figures by S.Slabospitsky. ASYM is the spin asymmetry. It is the ratio of the difference to the sum of the cross sections with the photon's linear polarization oriented parallel or perpendicular to the scattering plane.

The data are extracted from the figures by S.Slabospitsky. ASYM is the spin asymmetry. It is the ratio of the difference to the sum of the cross sections with the photon's linear polarization oriented parallel or perpendicular to the scattering plane.

The data are extracted from the figures by S.Slabospitsky. ASYM is the spin asymmetry. It is the ratio of the difference to the sum of the cross sections with the photon's linear polarization oriented parallel or perpendicular to the scattering plane.

More…

Angular and polarization dependence of Compton scattering from He-4 in the Delta resonance region

Kraus, A. ; Selke, O. ; Wissmann, F. ; et al.
Phys.Lett.B 432 (1998) 45-50, 1998.
Inspire Record 487231 DOI 10.17182/hepdata.28171

Using linearly polarized tagged photons from coherent bremsstrahlung, differential cross sections and beam asymmetries for Compton scattering by 4 He have been measured at MAMI in the energy interval between 150 MeV and 500 MeV for scattering angles of θ γ lab =37°, 93° and 137°, thus largely increasing the available data base. Improved calculations in terms of the Δ -hole model completely fail to describe the data at large scattering angles. The same proved to be true for a schematic model, even after taking into account properties of nuclear photo-absorption in very detail.

1 data table match query

Axis error includes +- 0.0/0.0 contribution.


Measurement of A(c) with charmed mesons at SLD.

The SLD collaboration Abe, Kenji ; Abe, Koya ; Abe, Toshinori ; et al.
Phys.Rev.D 63 (2001) 032005, 2001.
Inspire Record 533573 DOI 10.17182/hepdata.41721

We present a direct measurement of the parity-violation parameter $A_c$ in the coupling of the $Z^0$ to $c$-quarks with the SLD detector. The measurement is based on a sample of 530k hadronic $Z^0$ decays, produced with a mean electron-beam polarization of $|P_e| = 73 %$. The tagging of $c$-quark events is performed using two methods: the exclusive reconstruction of $D^{\ast+}$, $D^+$, and $D^0$ mesons, and the soft-pions ($\pi_s$) produced in the decay of $D^{\ast+}\to D^0 \pi_s^+$. The large background from $D$ mesons produced in $B$ hadron decays is separated efficiently from the signal using precision vertex information. The combination of these two methods yields $A_c = 0.688 \pm 0.041.$

1 data table match query

CONST(NAME=A_C) is connected with the forward-backward asymmetry by following way: ASYM(NAME=FB) = ABS(P_e)*CONST(NAME=A_C)*2z/(1 + z**2), where z = cos(theta), theta is the polar angle of the outgoing fermion relative to the incident electron, P_e is the longitudinal polarization of the electron beam. Two values for constant A_c were obtained using two different c-quark tagging methods: exclusive charmed-meson reconstruction (C=EXCLUSIVE) and inclusive soft-pion analysis (C=SOFT_PIONS).


A Measurement of the Weak Axial Couplings of the $b$ and $c$ Quark

The JADE collaboration Elsen, E. ; Allison, J. ; Ambrus, K. ; et al.
Z.Phys.C 46 (1990) 349-360, 1990.
Inspire Record 282535 DOI 10.17182/hepdata.15241

The forward-backward charge asymmetries of theb andc quarks are measured with the JADE detector at PETRA at\(\sqrt s= 35\) GeV and 44 GeV using both electrons and muons to tag the heavy quarks. At\(\sqrt s= 35\) GeV, a simultaneous fit for the two asymmetries yields the resultAb=−9.3±5.2% (state.) ndAc=−9.6±4.0% (stat.). The systematic errors are comparable with the statistical uncertainties. Combining the measurements at both energies and alternately constraining the weak coupling of thec andb quark to their Standard Model values (ac=1,ab=−1) increases the precision of the measurement of coupling constant of the other quark. Using this procedureab=−0.72±0.34 andac=0.79±0.40, where the numbers are corrected for\(B\bar B - mixing\) and the errors include both statistical and systematic contributions. The mixing parameter for continuum\(b\bar b - production\) is determined to be χ-0.24±0.12 if both heavy quark coupling constants are constrained to their values in the Standard Model.

4 data tables match query

Results of simultaneous fit to both asymmetries. This table is for the CHARMED quark.

Results of simultaneous fit to both asymmetries. This table is for the BOTTOM quark.

Results for BOTTOM quark asymmetry with c asymmetry constrained to the standard model value.

More…

Heavy Quark Charge Asymmetries With the Cello Detector

The CELLO collaboration Behrend, H.J. ; Criegee, L. ; Field, J.H. ; et al.
Z.Phys.C 47 (1990) 333-342, 1990.
Inspire Record 282536 DOI 10.17182/hepdata.15243

The production ofb andc quarks ine+e− annihilation has been studied with the CELLO detector in the range from 35 GeV up to the highest PETRA energies. The heavy quarks have been tagged by their semileptonic decays. The charge asymmetries forb quarks at 35 and 43 GeV have been found to beAb=−(22.2±8.1)% andAb=−(49.1±16.5)%, respectively, using a method incorporating jet variables and their correlations for the separation of the heavy quarks from the back ground of the lighter quarks. Forc quarks we obtainAc=−(12.9±8.8)% andAc=+(7.7±14.0)%, respectively. The axial vector coupling constants of the heavy quarksc andb are found to beac=+(0.29±0.46) andab=−(1.15±0.41) taking\(B^0 \overline {B^0 } \) mixing into account. The results are in agreement with the expectations from the standard model.

2 data tables match query

BOTTOM quark charge asymmetry.

CHARMED quark charge asymmetry.


A Measurement of the Charmed Quark Asymmetry in $e^+ e^-$ Annihilation

The JADE collaboration Ould-Saada, F. ; Allison, J. ; Ambrus, K. ; et al.
Z.Phys.C 44 (1989) 567, 1989.
Inspire Record 278937 DOI 10.17182/hepdata.15357

The charmed quark charge asymmetry has been measured at the average centre of mass energy of 35 GeV with the JADE detector at thee+e− storage ring PETRA. Charmed quarks were identified byD*± tagging using the ΔM technique.D*± mesons were reconstructed through their decay intoD0 mesons resulting in (Kπ) π and (K π π π) π final states. The measured charge asymmetryA=−0.149±0.067 is in agreement with the expectation from the electroweak interference effect in quantum flavour dynamics (QFD).

1 data table match query

CHARMED quark charge asymmetry.


Measurement of the target asymmetry of eta and pi0 photoproduction on the proton.

Bock, A. ; Anton, G. ; Beulertz, W. ; et al.
Phys.Rev.Lett. 81 (1998) 534-537, 1998.
Inspire Record 474492 DOI 10.17182/hepdata.19492

At the tagged photon facility PHOENICS at the Bonn accelerator ELSA a measurement of the target asymmetry of the reaction γp→pη from threshold to 1150 MeV has been performed. Simultaneously the reaction γp→pπ0 has been measured in the first resonance region. Results are presented for both reactions. The target asymmetry data are suited to put considerable constraints on the model parameters used for the theoretical description of meson photoproduction.

3 data tables match query

The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).

The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).

The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).