Searches for anomalous ttbar production in pp collisions at sqrt(s)=8 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 111 (2013) 211804, 2013.
Inspire Record 1253367 DOI 10.17182/hepdata.62178

Searches for anomalous top quark-antiquark production are presented, based on pp collisions at sqrt(s) = 8 TeV. The data, corresponding to an integrated luminosity of 19.7 inverse femtobarns, were collected with the CMS detector at the LHC. The observed ttbar invariant mass spectrum is found to be compatible with the standard model prediction. Limits on the production cross section times branching fraction probe, for the first time, a region of parameter space for certain models of new physics not yet constrained by precision measurements.

11 data tables

Comparison between data and SM prediction for reconstructed M(ttbar) distributions for the boosted semi-leptonic analysis with 0 b-tagged jets.

Comparison between data and SM prediction for reconstructed M(ttbar) distributions for the boosted semi-leptonic analysis with 1 or more b-tagged jets.

Comparison between data and SM prediction for reconstructed M(ttbar) distributions for the all-hadronic analysis.

More…

Search for Baryon Number Violation in Top-Quark Decays

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 731 (2014) 173-196, 2014.
Inspire Record 1257387 DOI 10.17182/hepdata.62206

A search for baryon number violation (BNV) in top-quark decays is performed using pp collisions produced by the LHC at sqrt(s) = 8 TeV. The top-quark decay considered in this search results in one light lepton (muon or electron), two jets, but no neutrino in the final state. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.5 inverse femtobarns. The event selection is optimized for top quarks produced in pairs, with one undergoing the BNV decay and the other the standard model hadronic decay to three jets. No significant excess of events over the expected yield from standard model processes is observed. The upper limits at 95% confidence level on the branching fraction of the BNV top-quark decay are calculated to be 0.0016 and 0.0017 for the muon and the electron channels, respectively. Assuming lepton universality, an upper limit of 0.0015 results from the combination of the two channels. These limits are the first that have been obtained on a BNV process involving the top quark.

3 data tables

Muon channel: expected and observed yields in the tight selections for an assumed BNV decay branching fraction of zero. The uncertainties include both statistical and systematic contributions.

Electron channel: expected and observed yields in the tight selections for an assumed BNV decay branching fraction of zero. The uncertainties include both statistical and systematic contributions.

Expected and observed 95% CL upper limits on the BNV decay branching fraction.


Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s)=8 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 02 (2014) 024, 2014.
Inspire Record 1275617 DOI 10.17182/hepdata.64868

The top-antitop quark (t t-bar) production cross section is measured in proton-proton collisions at sqrt(s) = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 inverse femtobarns. The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model.

2 data tables

The total efficiencies etotal, i.e. the products of event acceptance, selection efficiency and branching fraction for the respective TOP TOPBAR final states, as estimated from simulation for a top-quark mass of 172.5 GeV, and the measured TOP TOPBAR production cross sections, where the uncertainties are from statistical, systematic and integrated luminosity components, respectively.

The TOP TOPBAR cross section obtained by combining all final states.


Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with $b$-tagged jets in $pp$ collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3109, 2014.
Inspire Record 1301856 DOI 10.17182/hepdata.65210

The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in $pp$ collisions at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV with the ATLAS experiment at the LHC, using $t\bar{t}$ events with an opposite-charge $e\mu$ pair in the final state. The measurement was performed with the 2011 7 TeV dataset corresponding to an integrated luminosity of 4.6 fb$^{-1}$ and the 2012 8 TeV dataset of 20.3 fb$^{-1}$. The cross-section was measured to be: $\sigma_{t\bar{t}}=182.9\pm 3.1\pm 4.2\pm 3.6 \pm 3.3$ pb ($\sqrt{s}=7$ TeV) and $\sigma_{t\bar{t}}=242.9\pm 1.7\pm 5.5\pm 5.1\pm 4.2$ pb ($\sqrt{s}=8$ TeV, updated as described in the Addendum), where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the knowledge of the integrated luminosity and of the LHC beam energy. The results are consistent with recent theoretical QCD calculations at next-to-next-to-leading order. Fiducial measurements corresponding to the experimental acceptance of the leptons are also reported, together with the ratio of cross-sections measured at the two centre-of-mass energies. The inclusive cross-section results were used to determine the top quark pole mass via the dependence of the theoretically-predicted cross-section on $m_t^{\rm pole}$, giving a result of $m_t^{\rm pole}=172.9^{+2.5}_{-2.6}$ GeV. By looking for an excess of $t\bar{t}$ production with respect to the QCD prediction, the results were also used to place limits on the pair-production of supersymmetric top squarks $\tilde{t}_1$ with masses close to the top quark mass decaying via $\tilde{t}_1\rightarrow t\tilde{\chi}^0_1$ to predominantly right-handed top quarks and a light neutralino $\tilde{\chi}_0^1$, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 177 GeV are excluded at the 95% confidence level.

3 data tables

95% CL exclusion limit on signal strength.

95% CL exclusion limit on signal cross section for the 7 TeV dataset.

95% CL exclusion limit on signal cross section for the 8 TeV dataset.


A search for $t\bar{t}$ resonances using lepton-plus-jets events in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2015) 148, 2015.
Inspire Record 1373299 DOI 10.17182/hepdata.70548

A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb$^{-1}$ of proton-proton collision data collected at a centre-of-mass energy of $\sqrt{s}=8$ TeV. The lepton-plus-jets final state is used, where the top pair decays to $W^+bW^-\bar{b}$, with one $W$ boson decaying leptonically and the other hadronically. The invariant mass spectrum of top quark pairs is examined for local excesses or deficits that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence-level limits on the production rate are determined for massive states in benchmark models. The upper limits on the cross-section times branching ratio of a narrow $Z'$ boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour $Z'$ boson with mass below 1.8 TeV is excluded. Upper limits are set on the cross-section times branching ratio for a broad colour-octet resonance with $\Gamma/m =$ 15% decaying to $t\bar{t}$. These range from 2.5 pb to 0.03 pb for masses from 0.4 TeV to 3.0 TeV. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.2 TeV.

16 data tables

Selection efficiency x Acceptance for a Z' resonance.

Selection efficiency x Acceptance for a KK gluon resonance.

Selection efficiency x Acceptance for a KK graviton resonance.

More…

Measurement of colour flow with the jet pull angle in $t\bar{t}$ events using the ATLAS detector at $\sqrt{s}=8$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 750 (2015) 475-493, 2015.
Inspire Record 1376945 DOI 10.17182/hepdata.71235

The distribution and orientation of energy inside jets is predicted to be an experimental handle on colour connections between the hard--scatter quarks and gluons initiating the jets. This Letter presents a measurement of the distribution of one such variable, the jet pull angle. The pull angle is measured for jets produced in $t\bar{t}$ events with one $W$ boson decaying leptonically and the other decaying to jets using 20.3 fb$^{-1}$ of data recorded with the ATLAS detector at a centre-of-mass energy of $\sqrt{s}=8$ TeV at the LHC. The jet pull angle distribution is corrected for detector resolution and acceptance effects and is compared to various models.

6 data tables

Normalised fiducial ttbar differential cross-section for the jet pull angle distribution constructed using all particles.

Normalised fiducial ttbar differential cross-section for the jet pull angle distribution constructed using charged particles.

Statistical bin-bin correlation matrix.

More…

Inclusive and differential measurements of the t t-bar charge asymmetry in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 757 (2016) 154-179, 2016.
Inspire Record 1382590 DOI 10.17182/hepdata.68759

The t t-bar charge asymmetry is measured in proton-proton collisions at a centre-of-mass energy of 8 TeV. The data, collected with the CMS experiment at the LHC, correspond to an integrated luminosity of 19.7 inverse femtobarns. Selected events contain an electron or a muon and four or more jets, where at least one jet is identified as originating from b-quark hadronization. The inclusive charge asymmetry is found to be 0.0010 +/- 0.0068 (stat) +/- 0.0037 (syst). In addition, differential charge asymmetries as a function of rapidity, transverse momentum, and invariant mass of the t t-bar system are studied. For the first time at the LHC, the measurements are also performed in a reduced fiducial phase space of top quark pair production, with an integrated result of -0.0035 +/- 0.0072 (stat) +/- 0.0031 (syst). All measurements are consistent within two standard deviations with zero asymmetry as well as with the predictions of the standard model.

16 data tables

Corrected asymmetry as a function of $|y_\mathrm{t\bar{t}}|$ in the fiducial phase space. The value 9999 is used as a placeholder for infinity. The correlation matrix for these values can be found in a separate table.

Correlation matrix for the asymmetries as a function of $|y_\mathrm{t\bar{t}}|$ in the fiducial phase space. Both statistical and systematic effects are considered.

Corrected asymmetry as a function of $p_\text{T}^\mathrm{t\bar{t}}$ in the fiducial phase space. The value 9999 is used as a placeholder for infinity. The correlation matrix for these values can be found in a separate table.

More…

Measurement of the charge asymmetry in top quark pair production in pp collisions at sqrt(s) = 8 TeV using a template method

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 93 (2016) 034014, 2016.
Inspire Record 1388178 DOI 10.17182/hepdata.69208

The charge asymmetry in the production of top quark and antiquark pairs is measured in proton-proton collisions at a center-of-mass energy of 8 TeV. The data, corresponding to an integrated luminosity of 19.6 inverse femtobarns, were collected by the CMS experiment at the LHC. Events with a single isolated electron or muon, and four or more jets, at least one of which is likely to have originated from hadronization of a bottom quark, are selected. A template technique is used to measure the asymmetry in the distribution of differences in the top quark and antiquark absolute rapidities. The measured asymmetry is A[c,y] = [0.33 +/- 0.26 (stat) +/- 0.33 (syst)]%, which is the most precise result to date. The results are compared to calculations based on the standard model and on several beyond-the-standard-model scenarios.

1 data table

The measured $t\bar{t}$ production asymmetry $A_c^y$.


Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in $pp$ collision data at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 87, 2016.
Inspire Record 1392455 DOI 10.17182/hepdata.75528

This paper reports inclusive and differential measurements of the $t\bar{t}$ charge asymmetry $A_{\textrm{C}}$ in 20.3 fb$^{-1}$ of $\sqrt{s} = 8$ TeV $pp$ collisions recorded by the ATLAS experiment at the Large Hadron Collider at CERN. Three differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. The $t\bar{t}$ pairs are selected in the single-lepton channels ($e$ or $\mu$) with at least four jets, and a likelihood fit is used to reconstruct the $t\bar{t}$ event kinematics. A Bayesian unfolding procedure is performed to infer the asymmetry at parton level from the observed data distribution. The inclusive $t\bar{t}$ charge asymmetry is measured to be $A_{\textrm{C}} = 0.009 \pm 0.005$ (stat.$+$syst.). The inclusive and differential measurements are compatible with the values predicted by the Standard Model.

7 data tables

The inclusive $t\bar{t}$ production charge asymmetry, $A_C$, with statistical and systematic uncertainties combined.

Measured charge asymmetry, $A_C$, values for the electron and muon channels combined after unfolding as a function of the $t\bar{t}$ invariant mass, $m_{t\bar{t}}$. The quoted uncertainties include statistical and systematic components after the marginalisation.

Measured charge asymmetry, $A_C$, values for the electron and muon channels combined after unfolding as a function of the $t\bar{t}$ velocity along the z-axis, $\beta_{z,t\bar{t}}$. The quoted uncertainties include statistical and systematic components after the marginalisation.

More…

Measurement of the top quark mass using proton-proton data at ${\sqrt{(s)}}$ = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 93 (2016) 072004, 2016.
Inspire Record 1393269 DOI 10.17182/hepdata.71988

A new set of measurements of the top quark mass are presented, based on the proton-proton data recorded by the CMS experiment at the LHC at sqrt(s) = 8 TeV corresponding to a luminosity of 19.7 inverse femtobarns. The top quark mass is measured using the lepton + jets, all-jets and dilepton decay channels, giving values of 172.35 +/- 0.16 (stat) +/- 0.48 (syst) GeV, 172.32 +/- 0.25 (stat) +/- 0.59 (syst) GeV, and 172.82 +/- 0.19 (stat) +/- 1.22 (syst) GeV, respectively. When combined with the published CMS results at sqrt(s) = 7 TeV, they provide a top quark mass measurement of 172.44 +/- 0.13 (stat) +/- 0.47 (syst) GeV. The top quark mass is also studied as a function of the event kinematical properties in the lepton + jets decay channel. No indications of a kinematic bias are observed and the collision data are consistent with a range of predictions from current theoretical models of t t-bar production.

9 data tables

Measurement of $m_{t}$ as a function of the transverse momentum of the hadronically decaying top quark.

Measurement of $m_{t}$ as a function of the invariant mass of the tt¯ system.

Measurement of $m_{t}$ as a function of the transverse momentum of the tt¯ system.

More…