Probing hard color singlet exchange in p anti-p collisions at S**(1/2) = 630-GeV and 1800-GeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Lett.B 440 (1998) 189-202, 1998.
Inspire Record 476389 DOI 10.17182/hepdata.42131

We present results on dijet production via hard color-singlet exchange in proton-antiproton collisions at root-s = 630 GeV and 1800 GeV using the DZero detector. The fraction of dijet events produced via color-singlet exchange is measured as a function of jet transverse energy, separation in pseudorapidity between the two highest transverse energy jets, and proton-antiproton center-of-mass energy. The results are consistent with a color-singlet fraction that increases with an increasing fraction of quark-initiated processes and inconsistent with two-gluon models for the hard color-singlet.

2 data tables match query

Colour-singlet fraction at 1.8 TeV.

Ratio of colour-singlet fractions between 630 and 1800 GeV.


The Dijet mass spectrum and a search for quark compositeness in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 82 (1999) 2457-2462, 1999.
Inspire Record 473420 DOI 10.17182/hepdata.42143

Using the DZero detector at the 1.8 TeV pbarp Fermilab Tevatron collider, we have measured the inclusive dijet mass spectrum in the central pseudorapidity region |eta_jet| < 1.0 for dijet masses greater than 200 Gev/c^2. We have also measured the ratio of spectra sigma(|eta_jet| < 0.5)/sigma(0.5 < |eta_jet| < 1.0). The order alpha_s^3 QCD predictions are in good agreement with the data and we rule out models of quark compositeness with a contact interaction scale < 2.4 TeV at the 95% confidence level.

2 data tables match query

Dijet cross section for ABS(ETARAP)<1.0.

Ratio of cross sections for ABS(ETARAP) < 0.5 / 0.5 < ABS(ETARAP) < 1.0.


The Inclusive jet cross-section in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 82 (1999) 2451-2456, 1999.
Inspire Record 473457 DOI 10.17182/hepdata.42154

We have made a precise measurement of the central inclusive jet cross section at sqrt(s) = 1.8 TeV. The measurement is based on an integrated luminosity of 92 pb-1 collected at the Fermilab Tevatron pbar-p Collider with the D-Zero detector. The cross section, reported as a function of jet transverse energy (ET >= 60 GeV) in the pseudorapidity interval |eta| <= 0.5, is in good agreement with predictions from next-to-leading order quantum chromodynamics.

2 data tables match query

Inclusive cross section for ABS(ETARAP)<0.5. The quoted systematic (DSYS) errors do not include the luminosity uncertainty of 6.1 PCT.

Inclusive cross section for 0.1<=ABS(ETARAP)<=0.7. Data are taken from the AIP E-PAPS ftp site shown above. The quoted (DSYS) errors are the total systematic errors including the luminosity uncertainty.


Measurement of $\gamma$ + b + X and $\gamma$ + c + X production cross sections in $p \bar{p}$ collisions at $\sqrt{s}$=1.96 TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 102 (2009) 192002, 2009.
Inspire Record 810425 DOI 10.17182/hepdata.42739

First measurements of the differential cross sections for the inclusive production of a photon in association with a heavy quark (c, b) jet are presented, covering photon transverse momenta 30-150 GeV, photon rapidities | y_gamma| < 1.0, jet rapidities |y_jet| < 0.8, and jet transverse momenta pT_jet > 15 GeV. The results are based on an integrated luminosity of 1 fb^-1 in ppbar collisions at sqrt(s)=1.96 TeV recorded with the D0 detector at the Fermilab Tevatron Collider. The results are compared with next-to-leading order perturbative QCD predictions.

4 data tables match query

Differential cross section for (GAMMA BJET X) production in the region YRAP(GAMMA)*YRAP(JET) > 0.

Differential cross section for (GAMMA BJET X) production in the region YRAP(GAMMA)*YRAP(JET) < 0.

Differential cross section for (GAMMA CJET X) production in the region YRAP(GAMMA)*YRAP(JET) > 0.

More…

Measurement of the ratio of the p anti-p ---> W+c-jet cross section to the inclusive p anti-p ---> W+jets cross section

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 666 (2008) 23-30, 2008.
Inspire Record 781444 DOI 10.17182/hepdata.42740

We present a measurement of the fraction of inclusive $W$+jets events produced with net charm quantum number $\pm1$, denoted $W$+$c$-jet, in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV using approximately 1~fb$^{-1}$ of data collected by the D0 detector at the Fermilab Tevatron Collider. We identify the $W$+jets events via the leptonic $W$ boson decays. Candidate $W$+$c$-jet events are selected by requiring a jet containing a muon in association with a reconstructed $W$ boson and exploiting the charge correlation between this muon and $W$ boson decay lepton to perform a nearly model-independent background subtraction. We measure the fraction of $W$+$c$-jet events in the inclusive $W$+jets sample for jet $p_{T}>20$ GeV and pseudorapidity $|\eta|<2.5$ to be 0.074$\pm0.019$(stat.)$\pm^{0.012}_{0.014}$(syst.), in agreement with theoretical predictions. The probability that background fluctuations could produce the observed fraction of $W$+$c$-jet events is estimated to be $2.5\times 10^{-4}$, which corresponds to a 3.5 $\sigma$ statistical significance.

3 data tables match query

Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (E NU) channel for various jet PT ranges.

Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (MU NU) channel for various jet PT ranges.

Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (LEPTON NU) channel for various jet PT ranges.


The Inclusive jet cross-section in p anti-p collisions at s**(1/2) = 1.8-TeV using the k-perpendicular algorithm

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abdesselam, A. ; et al.
Phys.Lett.B 525 (2002) 211-218, 2002.
Inspire Record 563493 DOI 10.17182/hepdata.42888

The central inclusive jet cross section has been measured using a successive-combination algorithm for reconstruction of jets. The measurement uses 87.3 pb^{-1} of data collected with the D0 detector at the Fermilab Tevatron ppbar Collider during 1994-1995. The cross section, reported as a function of transverse momentum (pT>60 GeV) in the central region of pseudorapidity (|\eta|<0.5), exhibits reasonable agreement with next-to-leading order QCD predictions, except at low pT where the agreement is marginal.

1 data table match query

The inclusive jet cross section as a function of PT.


Inclusive jet production in p anti-p collisions

The D0 collaboration Abbott, B. ; Abdesselam, A. ; Abolins, M. ; et al.
Phys.Rev.Lett. 86 (2001) 1707-1712, 2001.
Inspire Record 536691 DOI 10.17182/hepdata.42948

We report a new measurement of the pseudorapidity (eta) and transverse-energy (Et) dependence of the inclusive jet production cross section in pbar b collisions at sqrt(s) = 1.8 TeV using 95 pb**-1 of data collected with the DZero detector at the Fermilab Tevatron. The differential cross section d^2sigma/dEt deta is presented up to |eta| = 3, significantly extending previous measurements. The results are in good overall agreement with next-to-leading order predictions from QCD and indicate a preference for certain parton distribution functions.

5 data tables match query

Single Inclusive Jet Production Cross Section.

Single Inclusive Jet Production Cross Section.

Single Inclusive Jet Production Cross Section.

More…

Cross-section for b jet production in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 85 (2000) 5068-5073, 2000.
Inspire Record 531669 DOI 10.17182/hepdata.42975

Bottom quark production in pbar-p collisions at sqrt(s)=1.8 TeV is studied with 5 inverse picobarns of data collected in 1995 by the DO detector at the Fermilab Tevatron Collider. The differential production cross section for b jets in the central rapidity region (|y(b)| < 1) as a function of jet transverse energy is extracted from a muon-tagged jet sample. Within experimental and theoretical uncertainties, DO results are found to be higher than, but compatible with, next-to-leading-order QCD predictions.

1 data table match query

No description provided.


The Ratio of jet cross-sections at S**(1/2) = 630-GeV and 1800-GeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 86 (2001) 2523-2528, 2001.
Inspire Record 532551 DOI 10.17182/hepdata.42973

The DO Collaboration has measured the inclusive jet cross section in proton-antiproton collisions at s**2 = 630 GeV. The results for pseudorapidities -0.5 to 0.5 are combined with our previous results at s**2 = 1800 GeV to form a ratio of cross sections with smaller uncertainties than either individual measurement. Next-to-leading-order QCD predictions show excellent agreement with the measurement at 630 GeV; agreement is also satisfactory for the ratio. Specifically, despite a 10% to 15% difference in the absolute normalization, the dependence of the ratio on jet transverse momentum is very similar for data and theory.

2 data tables match query

Inclusive jet cross section at 630 GeV.

Ratio of cross section at 630 and 1800 GeV (from PRL 82, 2451 (1999)).


Ratios of multijet cross-sections in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 86 (2001) 1955-1960, 2001.
Inspire Record 532905 DOI 10.17182/hepdata.42971

We report on a study of the ratio of inclusive three-jet to inclusive two-jet production cross sections as a function of total transverse energy in p-pbar collisions at a center-of-mass energy sqrt{s} = 1.8 TeV, using data collected with the D0 detector during the 1992-1993 run of the Fermilab Tevatron Collider. The measurements are used to deduce preferred renormalization scales in perturbative O(alpha_s^3) QCD calculations in modeling soft-jet emission.

1 data table match query

First and second errors correspond to uncorrelated (C=UNCORR) and correlated (C=CORR) uncertainties. Uncorrelated uncertainties include statistical and uncorrelated systematic uncertainties added in quadrature.