Real Part of the K+- p Forward Scattering Amplitude at 4.2-GeV/c, 7-GeV/c and 10-GeV/c

Baillon, P. ; Declais, Y. ; Ferro-Luzzi, M. ; et al.
Nucl.Phys.B 107 (1976) 189-210, 1976.
Inspire Record 108434 DOI 10.17182/hepdata.35862

The differential cross section of K − p and K + p elastic scattering has been measured at 4.2, 7 and 10 GeV/ c in the very forward region of scattering angles. The measurements have been made at the CERN PS by means of multiwire proportional chambers and counters. The region of momentum transfers t is 0.001 ⩽ | t | ⩽ 0.10 GeV 2 at the highest momentum and 0.001 ⩽ | t | ⩽ 0.03 GeV 2 at the lowest. Over these regions the Coulomb and the nuclear amplitudes reach their maximum interference. We have used a parametrisation of the above amplitudes to determine the value of the real part of the nuclear forward scattering amplitude. A dispersion relation fit has then been performed using these and earlier measurements; the asymptotic behaviour of the K ± p real parts has been examined in the light of this fit.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Real Part of the Forward Scattering Amplitude in K+- p Elastic Scattering Between 0.9-GeV/c and 2.6-GeV/c

Baillon, P. ; Bricman, C. ; Ferro-Luzzi, M. ; et al.
Phys.Lett.B 50 (1974) 377-382, 1974.
Inspire Record 89483 DOI 10.17182/hepdata.27960

The differential cross section for K ± p elastic scattering has been measured in the forward meson direction (0.0008 < t < 0.1 GeV 2 ) in an electronics experiment at incident momenta between 0.9 and 2.06 GeV/ c . The high statistics and absolute normalisation of the data allow a good determination of the real part of the forward nuclear scattering amplitude by means of the Coulomb-nuclear interference effect.

1 data table

No description provided.