Pseudorapidity dependence of particle production and elliptic flow in asymmetric nuclear collisions of $p$$+$Al, $p$$+$Au, $d$$+$Au, and $^{3}$He$+$Au at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 121 (2018) 222301, 2018.
Inspire Record 1684475 DOI 10.17182/hepdata.136476

Asymmetric nuclear collisions of $p$$+$Al, $p$$+$Au, $d$$+$Au, and $^{3}$He$+$Au at $\sqrt{s_{_{NN}}}=200$ GeV provide an excellent laboratory for understanding particle production, as well as exploring interactions among these particles after their initial creation in the collision. We present measurements of charged hadron production $dN_{\rm ch}/d\eta$ in all such collision systems over a broad pseudorapidity range and as a function of collision multiplicity. A simple wounded quark model is remarkably successful at describing the full data set. We also measure the elliptic flow $v_{2}$ over a similarly broad pseudorapidity range. These measurements provide key constraints on models of particle emission and their translation into flow.

14 data tables match query

Charged hadron $dN_{ch}/d\eta$ as a function of pseudorapidity in high-multiplicity 0%-5% central $^3$He+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Charged hadron $dN_{ch}/d\eta$ as a function of pseudorapidity in high-multiplicity 0%-5% central $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Charged hadron $dN_{ch}/d\eta$ as a function of pseudorapidity in high-multiplicity 0%-5% central $p$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

More…

Measurements of $B \rightarrow J/\psi$ at forward rapidity in $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Aidala, C. ; Ajitanand, N.N. ; Akiba, Y. ; et al.
Phys.Rev.D 95 (2017) 092002, 2017.
Inspire Record 1507891 DOI 10.17182/hepdata.140435

We report the first measurement of the fraction of $J/\psi$ mesons coming from $B$-meson decay ($F_{B{\rightarrow}J/\psi}$) in $p$+$p$ collisions at $\sqrt{s}=$ 510 GeV. The measurement is performed using the forward silicon vertex detector and central vertex detector at PHENIX, which provide precise tracking and distance-of-closest-approach determinations, enabling the statistical separation of $J/\psi$ due to $B$-meson decays from prompt $J/\psi$. The measured value of $F_{B{\rightarrow}J/\psi}$ is 8.1\%$\pm$2.3\% (stat)$\pm$1.9\% (syst) for $J/\psi$ with transverse momenta $0<p_T<5$ GeV/$c$ and rapidity $1.2<|y|<2.2$. The measured fraction $F_{B{\rightarrow}J/\psi}$ at PHENIX is compared to values measured by other experiments at higher center of mass energies and to fixed-order-next-to-leading-logarithm and color-evaporation-model predictions. The $b\bar{b}$ cross section per unit rapidity ($d\sigma/dy(pp{\rightarrow}b\bar{b})$) extracted from the obtained $F_{B{\rightarrow}J/\psi}$ and the PHENIX inclusive $J/\psi$ cross section measured at 200 GeV scaled with color-evaporation-model calculations, at the mean $B$ hadron rapidity $y={\pm}1.7$ in 510 GeV $p$$+$$p$ collisions, is $3.63^{+1.92}_{-1.70}\mu$b, and it is consistent with the fixed-order-next-to-leading-logarithm calculations.

3 data tables match query

Fraction of $B$-meson decays in $J/\psi$ samples obtained in $p$+$p$ collisions at $\sqrt{S}$ = 510 GeV.

Fraction of $B$-meson decays in $J/\psi$ samples obtained in $p$+$p$ collisions at $\sqrt{S}$ = 510 GeV.

The $b\bar{b}$ cross section per unit rapidity ($d\sigma/dy(pp→b\bar{b})$) extracted from the obtained $F_{B \rightarrow J/\psi}$ and the PHENIX inclusive $J/\psi$ cross section measured at 200 GeV scaled with color-evaporation-model calculations, at the mean $B$ hadron rapidity.


$J/\psi$ and $\psi(2S)$ production at forward rapidity in $p$+$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 101 (2020) 052006, 2020.
Inspire Record 1773662 DOI 10.17182/hepdata.140524

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive $J/\psi$ and cross-section ratio of $\psi(2S)$ to $J/\psi$ at forward rapidity in \pp collisions at \sqrts = 510 GeV via the dimuon decay channel. Comparison is made to inclusive $J/\psi$ cross sections measured at \sqrts = 200 GeV and 2.76--13 TeV. The result is also compared to leading-order nonrelativistic QCD calculations coupled to a color-glass-condensate description of the low-$x$ gluons in the proton at low transverse momentum ($p_T$) and to next-to-leading order nonrelativistic QCD calculations for the rest of the $p_T$ range. These calculations overestimate the data at low $p_T$. While consistent with the data within uncertainties above $\approx3$ GeV/$c$, the calculations are systematically below the data. The total cross section times the branching ratio is BR $d\sigma^{J/\psi}_{pp}/dy (1.2<|y|<2.2, 0<p_T<10~\mbox{GeV/$c$}) =$ 54.3 $\pm$ 0.5 (stat) $\pm$ 5.5 (syst) nb.

3 data tables match query

The total cross section times the branching ratio.

The inclusive $J/\psi$ differential cross section as a function of $p_T$ at 1.2 < $|y|$ < 2.2 at 510 GeV.

The inclusive $J/\psi$ differential cross section integrated over 0 < $p_T$ < 10 GeV/$c$ as a function of rapidity at 510 GeV.


B-meson production at forward and backward rapidity in $p$+$p$ and Cu+Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV

The PHENIX collaboration Aidala, C. ; Ajitanand, N.N. ; Akiba, Y. ; et al.
Phys.Rev.C 96 (2017) 064901, 2017.
Inspire Record 1512141 DOI 10.17182/hepdata.141715

The fraction of $J/\psi$ mesons which come from B-meson decay, $\textrm{F}_{B{\rightarrow}J/\psi}$, is measured for J/$\psi$ rapidity \mbox{$1.2<|y|<2.2$} and $p_T>0$ in $p$+$p$ and Cu+Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV with the PHENIX detector. The extracted fraction is $\textrm{F}_{B{\rightarrow}J/\psi}$ = 0.025 $\pm$ 0.006(stat) $\pm$ 0.010(syst) for $p$+$p$ collisions. For Cu+Au collisions, $\textrm{F}_{B{\rightarrow}J/\psi}$ is 0.094 $\pm$ 0.028(stat) $\pm$ 0.037(syst) in the Au-going direction ($-2.2<y<-1.2$) and 0.089 $\pm$ 0.026(stat) $\pm$ 0.040(syst) in the Cu-going direction ($1.2<y<2.2$). The nuclear modification factor, $R_{\rm CuAu}$, of B mesons in Cu+Au collisions is consistent with binary scaling of measured yields in $p$+$p$ at both forward and backward rapidity.

4 data tables match query

Differential cross section for $p$+$p$ $\rightarrow$ $b\bar{b}$ at $\sqrt{s}$ = 200 GeV.

Fraction F$_{B \rightarrow J/\psi}$ of $B$-meson decays in the inclusive $J/\psi$ sample in $p$+$p$ and Cu+Au collisions at $sqrt{s_{NN}}$ = 200 GeV versus rapidity along with a theoretical estimation based on fixed-order plus next-to-leading logs (FONLL) for the $B \rightarrow J/\psi$ cross section and Color-Evaporation-Model (CEM) for the prompt $J/\psi$.

Fraction F$_{B \rightarrow J/\psi}$ of $B$-meson decays in the inclusive $J/\psi$ sample in $p$+$p$ and Cu+Au collisions at $sqrt{s_{NN}}$ = 200 GeV versus rapidity along with a theoretical estimation based on fixed-order plus next-to-leading logs (FONLL) for the $B \rightarrow J/\psi$ cross section and Color-Evaporation-Model (CEM) for the prompt $J/\psi$.

More…

Cross section and transverse single-spin asymmetry of muons from open heavy-flavor decays in polarized $p$+$p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Aidala, C. ; Ajitanand, N.N. ; Akiba, Y. ; et al.
Phys.Rev.D 95 (2017) 112001, 2017.
Inspire Record 1519828 DOI 10.17182/hepdata.142661

The cross section and transverse single-spin asymmetries of $\mu^{-}$ and $\mu^{+}$ from open heavy-flavor decays in polarized $p$+$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX experiment during 2012 at the Relativistic Heavy Ion Collider. Because heavy-flavor production is dominated by gluon-gluon interactions at $\sqrt{s}=200$ GeV, these measurements offer a unique opportunity to obtain information on the trigluon correlation functions. The measurements are performed at forward and backward rapidity ($1.4<|y|<2.0$) over the transverse momentum range of $1.25<p_T<7$ GeV/$c$ for the cross section and $1.25<p_T<5$ GeV/$c$ for the asymmetry measurements. The obtained cross section is compared to a fixed-order-plus-next-to-leading-log perturbative-quantum-chromodynamics calculation. The asymmetry results are consistent with zero within uncertainties, and a model calculation based on twist-3 three-gluon correlations agrees with the data.

4 data tables match query

$A_N$ of negatively-charged muons from open heavy-flavor decays as a function of $p_T$ in the backward ($x_F$ < 0) and forward ($x_F$ > 0) regions.

$A_N$ of positively-charged muons from open heavy-flavor decays as a function of $p_T$ in the backward ($x_F$ < 0) and forward ($x_F$ > 0) regions.

$A_N$ of negatively-charged and positively-charged muons from open heavy-flavor decays as a function of $x_F$, where $x_F$ > 0 is along the direction of the polarized proton.

More…

J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 86 (2012) 064901, 2012.
Inspire Record 1127261 DOI 10.17182/hepdata.143112

We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and 62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative to scaled p+p cross sections obtained from other measurements (R_AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement.

7 data tables match query

Estimates used for the 39- and 62.4-GeV $J/\psi$ $p$+$p$ cross sections along with their uncertainties.

$J/\psi$ invariant yields are shown for Au+Au collisions at 39 and 62.4 GeV as a function of the number of participating nucleons.

$J/\psi$ invariant yields are shown for Au+Au collisions at 39 and 62.4 GeV as a function of the number of participating nucleons.

More…

Nonperturbative transverse-momentum-dependent effects in dihadron and direct photon-hadron angular correlations in $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.D 98 (2018) 072004, 2018.
Inspire Record 1672014 DOI 10.17182/hepdata.143196

Dihadron and isolated direct photon-hadron angular correlations are measured in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The correlations are sensitive to nonperturbative initial-state and final-state transverse momentum $k_T$ and $j_T$ in the azimuthal nearly back-to-back region $\Delta\phi\sim\pi$. In this region, transverse-momentum-dependent evolution can be studied when several different hard scales are measured. To have sensitivity to small transverse momentum scales, nonperturbative momentum widths of $p_{\rm out}$, the out-of-plane transverse momentum component perpendicular to the trigger particle, are measured. These widths are used to investigate possible effects from transverse-momentum-dependent factorization breaking. When accounting for the longitudinal momentum fraction of the away-side hadron with respect to the near-side trigger particle, the widths are found to increase with the hard scale; this is qualitatively similar to the observed behavior in Drell-Yan and semi-inclusive deep-inelastic scattering interactions. The momentum widths are also studied as a function of center-of-mass energy by comparing to previous measurements at $\sqrt{s}=510$ GeV. The nonperturbative jet widths also appear to increase with $\sqrt{s}$ at a similar $x_T$, which is qualitatively consistent to similar measurements in Drell-Yan interactions. To quantify the magnitude of any transverse-momentum-dependent factorization breaking effects, calculations will need to be performed to compare to these measurements.

36 data tables match query

The per-trigger yields are shown as a function of $\Delta\phi$ in several $p_T^{trig}$ $\otimes$ $p_T^{assoc}$ bins.

The per-trigger yields are shown as a function of $\Delta\phi$ in several $p_T^{trig}$ $\otimes$ $p_T^{assoc}$ bins.

The per-trigger yields are shown as a function of $\Delta\phi$ in several $p_T^{trig}$ $\otimes$ $p_T^{assoc}$ bins.

More…

Measurements of $e^+e^-$ pairs from open heavy flavor in $p$+$p$ and $d$+$A$ collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 96 (2017) 024907, 2017.
Inspire Record 1512140 DOI 10.17182/hepdata.142395

We report a measurement of $e^+e^-$ pairs from semileptonic heavy-flavor decays in $p$+$p$ collisions at $\sqrt{s_{NN}}=200$~GeV. The $e^+e^-$ pair yield from $b\bar{b}$ and $c\bar{c}$ is separated by exploiting a double differential fit done simultaneously in dielectron invariant mass and $p_T$. We used three different event generators, {\sc pythia}, {\sc mc@nlo}, and {\sc powheg}, to simulate the $e^+e^-$ spectra from $c\bar{c}$ and $b\bar{b}$ production. The data can be well described by all three generators within the detector acceptance. However, when using the generators to extrapolate to $4\pi$, significant differences are observed for the total cross section. These difference are less pronounced for $b\bar{b}$ than for $c\bar{c}$. The same model dependence was observed in already published $d$+$A$ data. The $p$+$p$ data are also directly compared with $d$+$A$ data in mass and $p_T$, and within the statistical accuracy no nuclear modification is seen.

4 data tables match query

Step by step extrapolation from the number of $e^+e^-$ pairs for $m_{e^+e^-}$ > 1.16 GeV/$c^2$ from $c\bar{c}$ in the PHENIX acceptance to the number of $c\bar{c}$ pairs in 4$\pi$ for PYTHIA, MC@NLO, and POWHEG. Numbers are in units of pairs per event using the $c\bar{c}$ cross sections determined in this paper.

Step by step extrapolation from the number of $e^+e^-$ pairs for $m_{e^+e^-}$ > 1.16 GeV/$c^2$ from $b\bar{b}$ in the PHENIX acceptance to the number of $b\bar{b}$ pairs in 4$\pi$ for PYTHIA, MC@NLO, and POWHEG. Numbers are in units of pairs per event using the $b\bar{b}$ cross sections determined in this paper.

Summary of $c\bar{c}$ and $b\bar{b}$ cross sections measured in $p$+$p$ collisions using three different generators, PYTHIA, MC@NLO, and POWHEG.

More…

Measurement of emission angle anisotropy via long-range angular correlations with high $p_T$ hadrons in $d$$+$Au and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 98 (2018) 014912, 2018.
Inspire Record 1638373 DOI 10.17182/hepdata.141453

We present measurements of two-particle angular correlations between high-transverse-momentum ($2<p_T<11$ GeV/$c$) $\pi^0$ observed at midrapidity ($|\eta|<0.35$) and particles produced either at forward ($3.1<\eta<3.9$) or backward ($-3.7<\eta<-3.1$) rapidity in $d$$+$Au and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The azimuthal angle correlations for particle pairs with this large rapidity gap in the Au-going direction exhibit a ridge-like structure that persists up to $p_T{\approx}6$ GeV/$c$ and which strongly depends on collision centrality, which is a similar characteristic to the hydrodynamical particle flow in A+A collisions. The ridge-like structure is absent in the $d$-going direction as well as in $p$$+$$p$ collisions, in the transverse-momentum range studied. The results indicate that the ridge-like structure is shifted in the Au-going direction toward more central collisions, similar to the charged-particle pseudorapidity distributions.

8 data tables match query

Fourier fit coefficients for CNT-MPCS (Au-going) correlations, as a function of collision system and $\pi^0$ $p_T$: (a) the negative of the dipole coefficient, $-c_1$; (b) the quadrupole coefficient $c_2$; (c) the ratio ${-c_2}/{c_1}$.

Fourier fit coefficients for CNT-MPCS (Au-going) correlations, as a function of collision system and $\pi^0$ $p_T$: Fractional systematic uncertainty on the quadrupole coefficient $c_2$ for $d$+Au.

Fourier fit coefficients for CNT-MPCS (Au-going) correlations, as a function of collision system and $\pi^0$ $p_T$: Fractional systematic uncertainty on the quadrupole coefficient $c_2$ for $p$+$p$.

More…

Double Helicity Dependence of Jet Properties from Dihadrons in Longitudinally Polarized p+p Collisions at sqrt(s) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 81 (2010) 012002, 2010.
Inspire Record 833129 DOI 10.17182/hepdata.141612

It has been postulated that partonic orbital angular momentum can lead to a significant double-helicity dependence in the net transverse momentum of Drell-Yan dileptons produced in longitudinally polarized p+p collisions. Analogous effects are also expected for dijet production. If confirmed by experiment, this hypothesis, which is based on semi-classical arguments, could lead to a new approach for studying the contributions of orbital angular momentum to the proton spin. We report the first measurement of the double-helicity dependence of the dijet transverse momentum in longitudinally polarized p+p collisions at sqrt(s) = 200 GeV from data taken by the PHENIX experiment in 2005 and 2006. The analysis deduces the transverse momentum of the dijet from the widths of the near- and far-side peaks in the azimuthal correlation of the dihadrons. When averaged over the transverse momentum of the triggered particle, the difference of the root-mean-square of the dijet transverse momentum between like- and unlike-helicity collisions is found to be -37 +/- 88(stat) +/- 14(syst) MeV/c.

3 data tables match query

Values of derived $<z_T>$ and $\hat{x_h}$.

Helicity-averaged $\sqrt{<j^2_T>}$ and $\sqrt{<k^2_T>}$ for combined 2005 and 2006 data.

Difference in $\sqrt{<j^2_T>}$ and $\sqrt{<k^2_T>}$ for like- minus unlike-helicity combinations.