A study of the polarisation and CP properties in $ZZ$ production is presented. The used data set corresponds to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. The $ZZ$ candidate events are reconstructed using two same-flavour opposite-charge electron or muon pairs. The production of two longitudinally polarised $Z$ bosons is measured with a significance of 4.3 standard deviations, and its cross-section is measured in a fiducial phase space to be $2.45 \pm 0.60$ fb, consistent with the next-to-leading-order Standard Model prediction. The inclusive differential cross-section as a function of a CP-sensitive angular observable is also measured. The results are used to constrain anomalous CP-odd neutral triple gauge couplings.
Unfolded differential cross-section as a function of the Optimal Observable $\mathcal{O}_{T_{yz,1} T_{yz,3}}$
The inclusive top-quark-pair production cross section $\sigma_{t\bar{t}}$ and its ratio to the $Z$-boson production cross section have been measured in proton--proton collisions at $\sqrt{s} = 13.6$ TeV, using 29 fb${}^{-1}$ of data collected in 2022 with the ATLAS experiment at the Large Hadron Collider. Using events with an opposite-charge electron-muon pair and $b$-tagged jets, and assuming Standard Model decays, the top-quark-pair production cross section is measured to be $\sigma_{t\bar{t}} = 850 \pm 3\mathrm{(stat.)}\pm 18\mathrm{(syst.)}\pm 20\mathrm{(lumi.)}$ pb. The ratio of the $t\bar{t}$ and the $Z$-boson production cross sections is also measured, where the $Z$-boson contribution is determined for inclusive $e^+e^-$ and $\mu^+\mu^-$ events in a fiducial phase space. The relative uncertainty on the ratio is reduced compared to the $t\bar{t}$ cross section, thanks to the cancellation of several systematic uncertainties. The result for the ratio, $R_{t\bar{t}/Z} = 1.145 \pm 0.003\mathrm{(stat.)}\pm 0.021\mathrm{(syst.)}\pm 0.002\mathrm{(lumi.)}$ is consistent with the Standard Model prediction using the PDF4LHC21 PDF set.
The fiducial phase-space definition for the $Z$-boson measurement. Born-level leptons are used.
The measured $t\bar{t}$ cross section and the ratio of the cross sections of $t\bar{t}$ and the $Z$-boson. Full phase-space is considered for $t\bar{t}$, while fiducial phase-space is considered for the $Z$-boson.
Table with pre-fit yields in the four regions used in the measurement
A search for non-resonant Higgs boson pair ($HH$) production is presented, in which one of the Higgs bosons decays to a b-quark pair ($b\bar b$) and the other decays to $WW^*$, $ZZ^*$, or $\tau^+\tau^-$, with in each case a final state with $\ell^+\ell^- +$ neutrinos ($\ell = e, \mu$). The analysis targets separately the gluon-gluon fusion and vector boson fusion production modes. Data recorded by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of $140\mathrm{fb}^{-1}$, are used in this analysis. Events are selected to have exactly two $b$-tagged jets and two leptons with opposite electric charge and missing transverse momentum in the final state. These events are classified using multivariate analysis algorithms to separate the $HH$ events from other Standard Model processes. No evidence of the signal is found. The observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair production is determined to be 9.7 (16.2) times the Standard Model prediction at 95% confidence level. The Higgs boson self-interaction coupling parameter $\kappa_\lambda$ and the quadrilinear coupling parameter $\kappa_{2V}$ are each separately constrained by this analysis to be within the ranges ${[-6.2, 13.3]}$ and ${[-0.17, 2.4]}$, respectively, at 95% confidence level, when all other parameters are fixed.
Pre-fit yields of the $t\bar{t}$, $Z$+HF and $Wt$ CRs, both for the ggF and VBF event selection, as well as the highest-score bins, numbered from high (VBF-SR 1 and ggF-SR 1) to low score (VBF-SR 5 and ggF-SR 7), of the BDT and DNN output distribution in the VBF and ggF event categories, respectively, as used in the final result. The shaded bands include both statistical and systematic uncertainties.
Post-fit yields from the signal+background fit of the $t\bar{t}$, $Z$+HF and $Wt$ CRs, both for the ggF and VBF event selections, as well as the highest-score bins, numbered from high (VBF-SR 1 and ggF-SR 1) to low score (VBF-SR 5 and ggF-SR 7), of the BDT and DNN output distribution in the VBF and ggF event categories respectively as used in the final result. The fit is a conditional fit with the signal strength fixed to the observed upper limit of $\mu_{HH} = 9.7$. The shaded bands include both statistical and systematic uncertainties.
Observed and expected upper limits on the ratios of the Higgs boson pair production cross-section to the corresponding Standard Model prediction $\sigma_{HH}/\sigma^\mathrm{SM}_{HH}$ for the ggF $HH$ signal only (top row), the VBF $HH$ signal only while considering ggF $HH$ as background (second row) and the combined ggF+VBF $HH$ signal considering only the ggF SR (third row) and considering all SRs (bottom row) at a 95% confidence level. The relative ratio between the ggF and VBF production modes is fixed to the SM value.
We present a search for magnetic monopoles and high-electric-charge objects using LHC Run 2 $\sqrt{s} =$13 TeV proton$-$proton collisions recorded by the ATLAS detector. A total integrated luminosity of 138 fb$^{-1}$ was collected by a specialized trigger. No highly ionizing particle candidate was observed. Considering the Drell-Yan and photon-fusion pair production mechanisms as benchmark models, cross-section upper limits are presented for spin-0 and spin-$\frac{1}{2}$ magnetic monopoles of magnetic charge $1g_\textrm{D}$ and $2g_\textrm{D}$ and for high-electric-charge objects of electric charge $20 \leq |z| \leq 100$, for masses between 200 GeV and 4000 GeV. The search improves by approximately a factor of three the previous cross-section limits on the Drell-Yan production of magnetic monopoles and high-electric charge objects. Also, the first ATLAS limits on the photon-fusion pair production mechanism of magnetic monopoles and high-electric-charge objects have been obtained.
Observed 95% CL upper limits on the cross section for all masses and charges of Drell-Yan spin-0 monopoles production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
Observed 95% CL upper limits on the cross section for all masses and charges of Drell-Yan spin-1/2 monopoles production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
Observed 95% CL upper limits on the cross section for all masses and charges of photon-fusion pair-produced spin-0 monopoles as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
Searches for the exclusive decays of the Higgs boson into $D^*\gamma$ and of the $Z$ boson into $D^0\gamma$ and $K^0_s\gamma$ can probe flavour-violating Higgs and $Z$ boson couplings to light quarks. Searches for these decays are performed with a $pp$ collision data sample corresponding to an integrated luminosity of $136.3$ fb$^{-1}$ collected at $\sqrt{s}=13$ TeV between 2016-2018 with the ATLAS detector at the CERN Large Hadron Collider. In the $D^*\gamma$ and $D^0\gamma$ channels, the observed (expected) 95$\%$ confidence-level upper limits on the respective branching fractions are ${\cal B}(H\rightarrow D^*\gamma)< 1.0 (1.2)\times 10^{-3}$, ${\cal B}(Z\rightarrow D^0\gamma)< 4.0 (3.4)\times 10^{-6}$, while the corresponding results in the $K^0_s\gamma$ channel are ${\cal B}(Z\rightarrow K^0_s\gamma)< 3.1 (3.0)\times 10^{-6}$.
Numbers of observed and expected background events for the $m_{\mathcal{M}\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty is obtained by integrating the total pdf after a background-only fit to the data, where the uncertainty does not take into account statistical fluctuations in each mass range. Expected Higgs and $Z$ boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-3}$ and $10^{-6}$, respectively. Entries are marked with a dash when there is no signal of that type in the specified range.
Observed and expected (with the corresponding $\pm1\sigma$ intervals) 95% CL upper limits on the branching fractions for $H\rightarrow D^*\gamma$, $Z\rightarrow D^0\gamma$ and $Z\rightarrow K^0_s\gamma$. Standard Model production of the Higgs boson is assumed. The corresponding upper limits on the production cross-section times branching fraction $\sigma\times\mathcal{B}$ are also shown.
This Letter presents a differential cross-section measurement of Lund subjet multiplicities, suitable for testing current and future parton shower Monte Carlo algorithms. This measurement is made in dijet events in 140 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data collected with the ATLAS detector at CERN's Large Hadron Collider. The data are unfolded to account for acceptance and detector-related effects, and are then compared with several Monte Carlo models and to recent resummed analytical calculations. The experimental precision achieved in the measurement allows tests of higher-order effects in QCD predictions. Most predictions fail to accurately describe the measured data, particularly at large values of jet transverse momentum accessible at the Large Hadron Collider, indicating the measurement's utility as an input to future parton shower developments and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
$N_{Lund}, k_t \geq 0.5~\text{GeV}$, All $p_T$ bins, Central $\eta$
$N_{Lund}, k_t \geq 0.5~\text{GeV}$, All $p_T$ bins, Forward $\eta$
$N_{Lund}, k_t \geq 0.5~\text{GeV}$, $300~\text{GeV} \leq p_T < 500~\text{GeV}$, Inclusive $\eta$
This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and missing transverse momentum. Two complementary analysis channels are used, with each channel specifically targeting either low or high values of the higgsino mass. The low-mass (high-mass) channel exploits 126 (139) fb$^{-1}$ of $\sqrt{s}=13$ TeV data collected by the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess above the Standard Model prediction is found. At 95% confidence level, masses between 130 GeV and 940 GeV are excluded for higgsinos decaying exclusively into Higgs bosons and gravitinos. Exclusion limits as a function of the higgsino decay branching ratio to a Higgs boson are also reported.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
A measurement of the invisible width of the $Z$ boson using events with jets and missing transverse momentum is presented using 37 $\mbox{fb\(^{-1}\)}$ of 13 TeV proton-proton data collected by the ATLAS detector in 2015 and 2016. The ratio of $Z\rightarrow \textrm{inv}$ to $Z\rightarrow\ell\ell$ events, where inv refers to non-detected particles and $\ell$ is either an electron or a muon, is measured and corrected for detector effects. Events with at least one energetic central jet with $p_{\textrm{T}} \geq 110$ GeV are selected for both the $Z\rightarrow \textrm{inv}$ and $Z\rightarrow\ell\ell$ final states to obtain a similar phase space in the ratio. The invisible width is measured to be $506\pm2 \textrm{ (stat.)} \pm12 \textrm{ (syst.)}$ MeV and is the single most precise recoil-based measurement. The result is in agreement with the most precise determination from LEP and the Standard Model prediction based on three neutrino generations.
Measured invisible width of the $Z$ boson, $\Gamma(Z\rightarrow \textrm{inv})$.
Measured $\mathrm{R}^{\mathrm{miss}}_{ee}$.
Measured $\mathrm{R}^{\mathrm{miss}}_{\mu\mu}$.
Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass splitting is $\mathcal{O}(1 \text{GeV})$. This Letter presents a novel search for nearly mass-degenerate Higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass splittings between the lightest charged and neutral Higgsinos from $0.3$ GeV to $0.9$ GeV is excluded at 95$\%$ confidence level, with a maximum reach of approximately $170$ GeV in the Higgsino mass.
Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.
Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
This Letter presents the first study of Higgs boson production in association with a vector boson (V = W or Z) in the fully hadronic $qqbb$ final state using data recorded by the ATLAS detector at the LHC in proton-proton collisions at $\sqrt{s}=13$ TeV and corresponding to an integrated luminosity of 137 fb$^{-1}$. The vector bosons and Higgs bosons are each reconstructed as large-radius jets and tagged using jet substructure techniques. Dedicated tagging algorithms exploiting $b$-tagging properties are used to identify jets consistent with Higgs bosons decaying into $b\bar{b}$. Dominant backgrounds from multijet production are determined directly from the data, and a likelihood fit to the jet mass distribution of Higgs boson candidates is used to extract the number of signal events. The VH production cross section is measured inclusively and differentially in several ranges of Higgs boson transverse momentum: 250-450, 450-650, and greater than 650 GeV. The inclusive signal yield relative to the standard model expectation is observed to be $\mu = 1.4 ^{+1.0}_{-0.9}$ and the corresponding cross section is $3.1 \pm 1.3\, (stat.)\: ^{+1.8}_{-1.4}\, (syst.$) pb.
Higgs candidate jet mass distributions in the signal region for $p_{T,J}^H$ in [250,450) GeV obtained after the inclusive fit with a single Z+jets normalization factor and a single signal strength.
Higgs candidate jet mass distributions in the signal region for $p_{T,J}^H$ in [450,650) GeV obtained after the inclusive fit with a single Z+jets normalization factor and a single signal strength.
Higgs candidate jet mass distributions in the signal region for $p_{T,J}^H \geq 650$ GeV obtained after the inclusive fit with a single Z+jets normalization factor and a single signal strength.