We report on a study of the transverse momentum dependence of nuclear modification factors $R_{dAu}$ for charged hadrons produced in deuteron + gold collisions at $\sqrt{s_{NN}=\unit[200]{GeV}$, as a function of collision centrality and of the pseudorapidity ($\eta = 0,1,2.2,3.2 $) of the produced hadrons. We find significant and systematic decrease of $R_{dAu}$ with increasing rapidity. The midrapidity enhancement and the forward rapidity suppression are more pronounced in central collisions relative to peripheral collisions. These results are relevant to the study of the possible onset of gluon saturation at RHIC energies.
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\frac{h^{+}+h^{-}}{2}$,$\frac{h^{+}+h^{-}}{2}$ in $\mathrm{p}\mathrm{p}$,$\mathrm{d}-\mathrm{Au}$ at $\sqrt{s}=200\,\mathrm{Ge\!V}$ near $\eta=0$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\frac{h^{+}+h^{-}}{2}$,$\frac{h^{+}+h^{-}}{2}$ in $\mathrm{p}\mathrm{p}$,$\mathrm{d}-\mathrm{Au}$ at $\sqrt{s}=200\,\mathrm{Ge\!V}$ near $\eta=1$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{h}^{-}$,$\mathrm{h}^{-}$ in $\mathrm{p}\mathrm{p}$,$\mathrm{d}-\mathrm{Au}$ at $\sqrt{s}=200\,\mathrm{Ge\!V}$ near $\eta=2.2$
Transverse momentum spectra and rapidity densities, dN/dy, of protons, anti-protons, and net--protons (p-pbar) from central (0-5%) Au+Au collisions at sqrt(sNN) = 200 GeV were measured with the BRAHMS experiment within the rapidity range 0 < y < 3. The proton and anti-proton dN/dy decrease from mid-rapidity to y=3. The net-proton yield is roughly constant for y<1 at dN/dy~7, and increases to dN/dy~12 at y~3. The data show that collisions at this energy exhibit a high degree of transparency and that the linear scaling of rapidity loss with rapidity observed at lower energies is broken. The energy loss per participant nucleon is estimated to be 73 +- 6 GeV.
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$,$\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ . NaN values means no observation.
$\frac{\mathrm{d}N}{\mathrm{d}y}$ versus $y$ for $\mathrm{p}$,$\overline{\mathrm{p}}$,$\mathrm{p}-\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ . The correction for the $\Lambda$ contribution is not straight forward since BRAHMS does not measure the $\Lambda$s and PHENIX and STAR only measures the $\Lambda$s at mid-rapidity! If one assumes that the mid-rapidity estimated in the paper of $$R=\frac{\Lambda-\bar{\Lambda}}{\mathrm{p}-\bar{\mathrm{p}}} = \frac{\Lambda}{\mathrm{p}} = \frac{\bar{\Lambda}}{\bar{\mathrm{p}}} = 0.93\pm 0.11(\mathrm{stat})\pm 0.25(\mathrm{syst}) $$ and the BRAHMS "acceptance factor" of $A=0.53\pm 0.05$ which includes both that only 64% decays to protons and that some are rejected by the requirement of the track to point back to the IP. The corrected $\mathrm{p}$ ($\bar{\mathrm{p}}$ or net-$\mathrm{p}$) is then : $$\left.\frac{\mathrm{d}N}{\mathrm{d}y}\right|_{\mathrm{corrected}} = \frac{\mathrm{d}N}{\mathrm{d}y}(1/(1+RA))= \frac{\mathrm{d}N}{\mathrm{d}y}\left(0.67\pm 0.05(\mathrm{stat})\pm 0.11(\mathrm{syst})\right)$$ Which can be used at all rapidities if one believes that R is constant. The fact that net-$\mathrm{K}=\mathrm{K}^{+}-\mathrm{K}^{-}$ follows net-$\mathrm{p}$ (see fx. talk by Djamel Ouerdane at QM04), seems to indicate that the net-$\Lambda$ follow the net-$\mathrm{p}$ trend and the correction is reasonable.
We present spectra of charged hadrons from Au+Au and d+Au collisions at $\sqrt{s_{NN}}=200$ GeV measured with the BRAHMS experiment at RHIC. The spectra for different collision centralities are compared to spectra from ${\rm p}+\bar{{\rm p}}$ collisions at the same energy scaled by the number of binary collisions. The resulting ratios (nuclear modification factors) for central Au+Au collisions at $\eta=0$ and $\eta=2.2$ evidence a strong suppression in the high $p_{T}$ region ($>$2 GeV/c). In contrast, the d+Au nuclear modification factor (at $\eta=0$) exhibits an enhancement of the high $p_T$ yields. These measurements indicate a high energy loss of the high $p_T$ particles in the medium created in the central Au+Au collisions. The lack of suppression in d+Au collisions makes it unlikely that initial state effects can explain the suppression in the central Au+Au collisions.
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}\eta}$ versus $p_{\mathrm{T}}$ for $\frac{h^{+}+h^{-}}{2}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $\eta=0$, per centrality
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}\eta}$ versus $p_{\mathrm{T}}$ for $\frac{h^{+}+h^{-}}{2}$ in $\mathrm{d}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $\eta=0$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}\eta}$ versus $p_{\mathrm{T}}$ for $\mathrm{h}^{-}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $\eta=2.2$, per centrality
We present ratios of the numbers of charged antiparticles to particles (pions, kaons and protons) in Au + Au collisions at $\sqrt{s_{NN}}=200$ GeV as a function of rapidity in the range $y$=0-3. While the particle ratios at midrapidity are approaching unity, the $K^-/K^+$ and $\bar{p}/p$ ratios decrease significantly at forward rapidities. An interpretation of the results within the statistical model indicates a reduction of the baryon chemical potential from $\mu_B \approx 130$MeV at $y$=3 to $\mu_B \approx 25$MeV at $y$=0.
$\mathrm{\pi}^{-}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{\pi}^{-}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{-}/\mathrm{K}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{K}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
Identified pi^[+/-] K^[+/-], p and p-bar transverse momentum spectra at mid-rapidity in sqrt(s_NN)=130 GeV Au-Au collisions were measured by the PHENIX experiment at RHIC as a function of collision centrality. Average transverse momenta increase with the number of participating nucleons in a similar way for all particle species. The multiplicity densities scale faster than the number of participating nucleons. Kaon and nucleon yields per participant increase faster than the pion yields. In central collisions at high transverse momenta (p_T greater than 2 GeV/c), anti-proton and proton yields are comparable to the pion yields.
Transverse momentum spectra for PI+ in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.
Transverse momentum spectra for PI- in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.
Transverse momentum spectra for K+ in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.
Measurements, with the BRAHMS detector, of the antiproton to proton ratio at central and forward rapidities are presented for Au+Au reactions at sqrt{s_{NN}}=130 GeV, and for three different collision centralities. For collisions in the 0-40% centrality range we find $N(\bar{{\rm p}})/N({\rm p}) = 0.64 +- 0.04 (stat.) +- 0.06 (syst.) at y ~0, 0.66 +- 0.03 +- 0.06 at y ~ 0.7, and 0.41 +- 0.04 +- 0.06 at y ~ 2. The ratios are found to be nearly independent of collision centrality and transverse momentum. The measurements demonstrate that the antiproton and proton rapidity densities vary differently with rapidity, and indicate that a net-baryon free midrapidity plateau (Bjorken limit) is not reached at this RHIC energy.
$\overline{\mathrm{p}}/\mathrm{p}$ versus $\mathrm{Centrality}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$