Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton-proton collisions at $\sqrt{s} = 2.76$ TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 756 (2016) 10-28, 2016.
Inspire Record 1407478 DOI 10.17182/hepdata.71195

The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb$^{-1}$ of $\sqrt{s} = 2.76$ TeV $pp$ collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity.

34 data tables

Mean value of the sum of the transverse energy in -4.9 < eta < -3.2 in pp collisions, <SumET>. Reported as a function of dijet pT^avg, shown here for +2.1 < eta^dijet < +2.8.

Mean value of the sum of the transverse energy in -4.9 < eta < -3.2 in pp collisions, <SumET>. Reported as a function of dijet pT^avg, shown here for +1.2 < eta^dijet < +2.1.

Mean value of the sum of the transverse energy in -4.9 < eta < -3.2 in pp collisions, <SumET>. Reported as a function of dijet pT^avg, shown here for +0.8 < eta^dijet < +1.2.

More…

Dijet production in photon-photon collisions at S**(1/2)(ee) = 161-GeV and 172-GeV

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 10 (1999) 547-561, 1999.
Inspire Record 474009 DOI 10.17182/hepdata.49386

Di-jet production is studied in collisions of quasi-real photons radiated by the LEP beams at e+e- centre-of-mass energies 161 and 172 GeV. The jets are reconstructed using a cone jet finding algorithm. The angular distributions of direct and double-resolved processes are measured and compared to the predictions of leading order and next-to-leading order perturbative QCD. The jet energy profiles are also studied. The inclusive two-jet cross-section is measured as a function of transverse energy and rapidity and compared to next-to-leading order perturbative QCD calculations. The inclusive two-jet cross-section as a function of rapidity is compared to the prediction of the leading order Monte Carlo generators PYTHIA and PHOJET. The Monte Carlo predictions are calculated with different parametrisations of the parton distributions of the photon. The influence of the `underlying event' has been studied to reduce the model dependence of the predicted jet cross-sections from the Monte Carlo generators.

14 data tables

Differential 2-jet cross section as a function of cos(theta*) for 'double-resolved' and 'direct' events.

No description provided.

No description provided.

More…

Transverse energy distributions within jets in p anti-p collisions at S**(1/2) = 1.8-Tev

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 357 (1995) 500-508, 1995.
Inspire Record 398175 DOI 10.17182/hepdata.42372

The distribution of the transverse energy in jets has been measured in p p collisions at s =1.8 TeV TeV using the DØ detector at Fermilab. This measurement of the jet shape is made as a function of jet transverse energy in both the central and forward rapidity regions. Jets are shown to narrow both with increasing transverse energy and with increasing rapidity. Next-to-leading order partonic QCD calculations are compared to the data. Although the calculations qualitatively describe the data, they are shown to be very dependent on renormalization scale, parton clustering algorithm, and jet direction definition and they fail to describe the data in all regions consistently.

6 data tables

No description provided.

No description provided.

No description provided.

More…