Measurement of nucleon structure functions in neutrino scattering.

The CHORUS collaboration Onengut, G. ; van Dantzig, R. ; de Jong, M. ; et al.
Phys.Lett.B 632 (2006) 65-75, 2006.
Inspire Record 699123 DOI 10.17182/hepdata.6187

After completion of the data taking for the νμ→ντ oscillation search, the CHORUS lead–scintillator calorimeter was used in the 1998 run as an active target. High-statistics samples of charged-current interactions were collected in the CERN SPS west area neutrino beam. This beam contained predominantly muon (anti-)neutrinos from sign-selected pions and kaons. We measure the flux and energy spectrum of the incident neutrinos and compare them with beam simulations. The neutrino–nucleon and anti-neutrino–nucleon differential cross-sections are measured in the range 0.01<x<0.7 , 0.05<y<0.95 , 10<Eν<200 GeV . We extract the neutrino–nucleon structure functions F2(x,Q2) , xF3(x,Q2) , and R(x,Q2) and compare these with results from other experiments.

121 data tables

The measured F2 and xF3 at X = 0.020.

The measured F2 and xF3 at X = 0.045.

The measured F2 and xF3 at X = 0.080.

More…

Measurement of xF3 and F2 structure functions in low Q**2 region with the IHEP-JINR neutrino detector.

The IHEP-JINR Neutrino Detector collaboration Sidorov, A.V. ; Anykeev, V.B. ; Batusov, Y.A. ; et al.
Eur.Phys.J.C 10 (1999) 405-408, 1999.
Inspire Record 500337 DOI 10.17182/hepdata.43397

The isoscalar structure functions $xF_3$ and $F_2$ are measured as functions of $x$ averaged over all $Q^2$ permissible for the range of 6 to 28 GeV of incident neutrino (anti-neutrino) energy at the IHEP-JINR Neutrino Detector. The QCD analysis of $xF_3$ structure function provides $\Lambda_{\bar{MS}}^{(4)} = (411 \pm 200)$ MeV under the assumption of QCD validity in the region of low $Q^2$. The corresponding value of the strong interaction constant $\alpha_S (M_Z) = 0.123^{+0.010}_{-0.013}$ agrees with the recent result of the CCFR collaboration and with the combined LEP/SLC result.

2 data tables

No description provided.

No description provided.


Measurement of x F3, F2 structure functions and Gross-Llewellyn-Smith sum rule with IHEP-JINR neutrino detector.

The IHEP-JINR Neutrino Detector collaboration Barabash, L.S. ; Baranov, S.A. ; Batusov, Yu.A. ; et al.
JINR-E1-96-308, 1996.
Inspire Record 426123 DOI 10.17182/hepdata.41668

The isoscalar structure functions xF_3 and F_2 are measured as functions of x averaged over all Q~2 permissible for the range 6 to 28 GeV of incident (anti)neutrino energy. With the measured values of xF_3, the value of the Gross-Llewellyn Smith sum rule is found to be $\int_{0}~{1}{F_3 dx} = 2.13\pm0.38 (stat)\pm 0.26 (syst)$. The QCD analysis of xF_3 provides $\Lambda_{\overline{MS}} =358 \pm 59 MeV$ . The obtained value of the strong interaction constant $\alpha_S (M_Z)=0.120~{+3}_{-4}$ is larger than most of the deep inelastic scattering results.

1 data table

The value of F2 is extracted with R = 0. The difference F2(C=R=.1)-F2(C=R=0.) is also presented.


A Reevaluation of the Gottfried sum

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badelek, B. ; et al.
Phys.Rev.D 50 (1994) R1-R3, 1994.
Inspire Record 358419 DOI 10.17182/hepdata.71293

We present a new determination of the nonsinglet structure function ${\mathit{F}}_{2}^{\mathit{p}}$ - ${\mathit{F}}_{2}^{\mathit{n}}$ at ${\mathit{Q}}^{2}$=4 ${\mathrm{GeV}}^{2}$ using recently measured values of ${\mathit{F}}_{2}^{\mathit{d}}$ and ${\mathit{F}}_{2}^{\mathit{n}}$/${\mathit{F}}_{2}^{\mathit{p}}$. A new evaluation of the Gottfried sum is given, which remains below the simple quark-parton model value of 1/3.

4 data tables

Errors of F2(D) are the estimated total uncertainties and those on the ratio and difference are statistical only.

Values of the Gottfried Sum Rule integral (GS) defined as the integral between X(C=MIN) and X = 0.8 of (F2(P)-F2(N))DX/X.

No description provided.

More…

Study of the Nucleon Structure Functions in Neutrino Interactions in the Energy Range of 10-{GeV} - 200-{GeV}

Ammosov, V.V. ; Burtovoy, V.S. ; Gapienko, V.A. ; et al.
Sov.J.Nucl.Phys. 47 (1988) 646, 1988.
Inspire Record 252538 DOI 10.17182/hepdata.17389

None

7 data tables

No description provided.

No description provided.

No description provided.

More…

STUDY OF NEUTRINO (ANTI-NEUTRINO) INTERACTIONS WITH NUCLEI AT 3-GeV TO 30-GeV

Ammosov, V.V. ; Baranov, D.S. ; Bugorsky, A.P. ; et al.
IFVE-85-107, 1985.
Inspire Record 218431 DOI 10.17182/hepdata.40944

None

4 data tables

No description provided.

SIG(Q=L)/SIG(Q=T) ASSUMED TO BE 0.

SIG(Q=L)/SIG(Q=T) ASSUMED TO BE 0.

More…

INCLUSIVE CHARGED CURRENT ANTI-NEUTRINO - NUCLEON INTERACTIONS AT HIGH-ENERGIES

The Fermilab-Serpukhov-Moscow-Michigan collaboration Ammosov, V.V. ; Denisov, A.G. ; Gapienko, G.S. ; et al.
Nucl.Phys.B 199 (1982) 399-423, 1982.
Inspire Record 167339 DOI 10.17182/hepdata.41220

We present results on the experimental study of inelastic charged-current antineutrino-nucleon scattering in the energy range of 10–200 GeV. The data sample, consisting of about 6500 antineutrino-induced events, was obtained in the Fermilab 15 ft bubble chamber filled with a heavy neon-hydrogen mixture. The differential cross sections for ν μ N interactions are presented in terms of scaling variables x and y . The structure functions F 2 ν and xF 3 ν have been evaluated as functions of x and E ν . A deviation from the scaling hypothesis, similar to those found in other experiments on inelastic lepton-nucleon scattering, has been observed. The data are interpreted in the framework of the quark-parton model. Quark and antiquark distributions and their energy dependences are presented.

21 data tables

No description provided.

No description provided.

No description provided.

More…

Muon-Deuterium Deep Inelastic Scattering

Kim, I.J. ; Entenberg, A. ; Jostlein, H. ; et al.
Phys.Rev.Lett. 33 (1974) 551, 1974.
Inspire Record 1427 DOI 10.17182/hepdata.21238

We have measured deep inelastic muon-deuteron scattering in the range 0.4<Q2<3.4 and 1.6<ν<5.6 GeV. We have extracted the neutron structure function and find that νW2n differs significantly from νW2p, as also found in e−d scattering. To compare μ−d and e−d scattering we form the ratio r(Q2)=(νW2)μd(νW2)ed=N(1+Q2Λ2)−2 and find N=0.925±0.038 and 1Λ2=−0.019±0.016.

1 data table

No description provided.