K^0 pi^0 Sigma^+ and K^*0 Sigma^+ photoproduction off the proton

The CBELSA/TAPS collaboration Nanova, M. ; Bacelar, J.C.S. ; Bantes, B. ; et al.
Eur.Phys.J.A 35 (2008) 333-342, 2008.
Inspire Record 781382 DOI 10.17182/hepdata.51372

The exclusive reactions $\gamma p \to K^{*0} \Sigma^+(1189)$ and $\gamma p \to K^{0} \pi^{0}\Sigma^+(1189)$, leading to the p 4$\pi^{0}$ final state, have been measured with a tagged photon beam for incident energies from threshold up to 2.5 GeV. The experiment has been performed at the tagged photon facility of the ELSA accelerator (Bonn). The Crystal Barrel and TAPS detectors were combined to a photon detector system of almost 4$\pi$ geometrical acceptance. Differential and total cross sections are reported. At energies close to the threshold, a flat angular distribution has been observed for the reaction $\gamma p\to K^{0} \pi^{0}\Sigma^+$ suggesting dominant s-channel production. $\Sigma^*(1385)$ and higher lying hyperon states have been observed. An enhancement in the forward direction in the angular distributions of the reaction $\gamma p \to K^{*0}\Sigma^+$ indicates a $t$-channel exchange contribution to the reaction mechanism. The experimental data are in reasonable agreement with recent theoretical predictions.

13 data tables

Differential cross section D(SIG)/DCOS(THETA(SIG+)) for the GAMMA P --> K0 PI0 SIGMA+ reaction for beam energies 1500-1700 and 1700-1850 MeV.

Differential cross section D(SIG)/DCOS(THETA(SIG+)) for the GAMMA P --> K0 PI0 SIGMA+ reaction for beam energies 1850-2000 and 2000-2150 MeV.

Differential cross section D(SIG)/DCOS(THETA(SIG+)) for the GAMMA P --> K0 PI0 SIGMA+ reaction for beam energies 2150-2300 and 2300-2500 MeV.

More…

Electroproduction of $\phi(1020)$ mesons at $1.4\leq Q^2\leq$ 3.8 GeV$^2$ measured with the CLAS spectrometer

The CLAS collaboration Santoro, J.P. ; Smith, E.S. ; Garc con, M. ; et al.
Phys.Rev.C 78 (2008) 025210, 2008.
Inspire Record 781974 DOI 10.17182/hepdata.50913

Electroproduction of exclusive $\phi$ vector mesons has been studied with the CLAS detector in the kinematical range $1.6\leq Q^2\leq 3.8$ GeV$^{2}$, $0.0\leq t^{\prime}\leq 3.6$ GeV$^{2}$, and $2.0\leq W\leq 3.0$ GeV. The scaling exponent for the total cross section as $1/(Q^2+M_{\phi}^2)^n$ was determined to be $n=2.49\pm 0.33$. The slope of the four-momentum transfer $t'$ distribution is $b_{\phi}=0.98 \pm 0.17$ GeV$^{-2}$. The data are consistent with the assumption of s-channel helicity conservation (SCHC). Under this assumption, we determine the ratio of longitudinal to transverse cross sections to be $R=0.86 \pm 0.24$. A 2-gluon exchange model is able to reproduce the main features of the data.

5 data tables

Axis error includes +- 18.6/18.6 contribution.

Axis error includes +- 18.6/18.6 contribution.

Axis error includes +- 18.6/18.6 contribution.

More…

Measurement of the incoherent $\gamma d \to \phi p n$ photoproduction near threshold

The LEPS collaboration Chang, W.C. ; Miyabe, M. ; Nakano, T. ; et al.
Phys.Lett.B 684 (2010) 6-10, 2010.
Inspire Record 825381 DOI 10.17182/hepdata.54640

We report measurements of differential cross sections and decay asymmetries of incoherent $\phi$-meson photoproduction from the deuteron at forward angles using linearly polarized photons at \Eg=1.5-2.4 GeV. The nuclear transparency ratio for the deuteron shows a large suppression, and is consistent with the A-dependence of the ratio observed in a previous measurement with nuclear targets. The reduction for the deuteron cannot be adequately explained in term of isospin asymmetry. The present results suggest the need of refining our understanding of the $\phi$-N interaction within a nucleus.

7 data tables

Distribution of DSIG/DT from incoherent reaction GAMMA DEUT --> PHI P N for the incident photon energy ranges 1.57 to 1.67 and 1.67 to 1.77 GeV.

Distribution of DSIG/DT from incoherent reaction GAMMA DEUT --> PHI P N for the incident photon energy ranges 1.77 to 1.87 and 1.87 to 1.97 GeV.

Distribution of DSIG/DT from incoherent reaction GAMMA DEUT --> PHI P N for the incident photon energy ranges 1.97 to 2.07 and 2.07 to 2.17 GeV.

More…

Elastic Electron-Proton Scattering at Momentum Transfers up to 110 Fermi$^−^2$

Behrend, H.J. ; Brasse, F.W. ; Engler, J. ; et al.
Nuovo Cim.A 48 (1967) 140-164, 1967.
Inspire Record 1185336 DOI 10.17182/hepdata.1060

Using the internal beam of DESY elastic electron-proton cross-sections were measured at various angles between 32° and 130°, and with momentum transfers ofq 2=39, 60, 80 and 110 fm−2. Two single-quadrupole spectrometers, movable around a common liquid-hydrogen target, were used for analysing the momentum of the scattered electrons. Čerenkov and shower counters discriminated against pion and low-energy background. As a cross-section reference, recoil protons from elastic scattering atq 2=10 fm−2 were used, with a quantameter serving as an intermediate monitor. The data are consistent with the Rosenbluth formula, giving real form factorsG E andG M . Both continue to decrease with increasing momentum transfer, but somewhat faster than indicated by measurements performed so far.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Non-annihilation channels in interactions near centre of mass energy 2200 MeV

Bacon, T.C. ; Butterworth, I. ; Miller, R.J. ; et al.
Nucl.Phys.B 32 (1971) 66-74, 1971.
Inspire Record 1385802 DOI 10.17182/hepdata.33173

The elastic and one-pion production channels from the pp interaction at four c.m. energies between 2150 and 2240 MeV are described. No evidence of formation of the narrow T(2195) meson is observed. The elastic differential cross section is measured in the range of squared four-momentum transfer ¦t¦ > 0.03 GeV2. This has been extrapolated to the forward direction where Re/Im parts of the amplitude are deduced. The one-pion final states are well described by assuming that they are dominated by Δ-production.

3 data tables

No description provided.

LEGENDRE POLYNOMIAL FIT USED TO EXTRAPOLATE D(SIG)/DT TO T=0 (ABOUT 30 PCT CORRECTION). QUOTED ERRORS INCLUDE BOTH EXTRAPOLATION UNCERTAINTY AND SYSTEMATIC ERRORS.

No description provided.