Total p-p and 'p-n' Cross Sections at Cosmotron Energies

Chen, Francis F. ; Leavitt, Christopher P. ; Shapiro, Anatole M. ;
Phys.Rev. 103 (1956) 211-225, 1956.
Inspire Record 46809 DOI 10.17182/hepdata.828

The total proton-proton cross section (excluding Coulomb scattering) has been measured at energies from 410 Mev up to 2.6 Bev, using external beams from the Cosmotron. Fast counting equipment was used to measure the attenuation of the beams through polyethylene, carbon, and liquid H2 absorbers. At each energy E, σp−p(E, Ω) was measured as a function of the solid angle Ω subtended by the rear counter at the center of the absorber. The total cross section σp−p was obtained by a least squares straight line extrapolation to Ω=0. The measured σp−p as a function of energy rises sharply from 26.5 mb at 410 Mev to 47.8 mb at 830 Mev and then remains approximately constant out to 1.4 Bev, above which energy it decreases gradually to about 42 mb at 2.6 Bev. Using the same equipment and procedure, we have also measured the D2O-H2O difference cross section, called "σp−n," for protons over the same energy range. From a comparison of "σp−n," and σp−p, with the n−p and n−d measurements of Coor et al. at 1.4 Bev, it is apparent that one nucleon is "shielded" by the other in the deuteron. This effect is not present at energies below 410 Mev. Comparing the measured p−p and "p−n" (corrected) cross sections with the results of other high-energy experiments, one may infer the following conclusions: (1) The sharp rise in σp−p from 400 to 800 Mev results from increasing single pion production, which may proceed through the T=32, J=32 excited nucleon state. (2) Above 1 Bev the inelastic (meson production) p−p cross section appears to be approximately saturated at 27-29 mb. (3) The rise in cross section for n−p interaction in the T=0 state, associated with the rise in double pion production, implies that double meson production also proceeds through the T=32 nucleon state. (4) The probable equality of σp−d and σn−d at 1.4 Bev implies the validity of charge symmetry at this energy.

4 data tables

No description provided.

No description provided.

More…

Antiproton-Proton Cross Sections at 1.0, 1.25, and 2.0 Bev

Armenteros, Rafael ; Coombes, Charles A. ; Cork, Bruce ; et al.
Phys.Rev. 119 (1960) 2068-2073, 1960.
Inspire Record 46744 DOI 10.17182/hepdata.813

The interaction of 1.0-, 1.25-, and 2.0-Bev antiprotons with protons has been studied with the aid of a 4π solid-angle scintillation-counter detector system. The measured total cross sections at the above energies are 100, 89, and 80 mb, respectively. At each energy, the charge-exchange cross section is approximately 5 mb. The total elastic cross sections are 33, 28, and 25 mb, respectively, at the three energies. The angular distribution of elastic scattering has been fitted with a simple optical-model calculation.

3 data tables

No description provided.

No description provided.

No description provided.


Nucleon and Nuclear Cross Sections for Positive Pions and Protons above 1.4 Bev/c

Longo, Michael J. ; Moyer, Burton J. ;
Phys.Rev. 125 (1962) 701-713, 1962.
Inspire Record 46829 DOI 10.17182/hepdata.26791

Total (π+, p) and (p, p) cross sections in the momentum range 1.4 to 4.0 Bev/c are presented. These measurements, with an accuracy of approximately 2%, were made at the Berkeley Bevatron by using counter techniques. Pions were distinguished from protons by means of a gas-filled Čerenkov counter. The (π+, p) total cross section was found to be almost constant above 2.0 Bev/c at a value near 29 mb. The (p, p) cross section decreases gradually from 47.5 mb to 41.7 mb over the momentum range covered. Transmission measurements of π+-nucleus and p-nucleus cross sections in both good and poor geometry were made at 3.0 Bev/c. The results are compared with the predictions of the optical model. In contrast to most previous work at high energies, an essentially exact solution of the wave equation for a potential well with a diffuse edge was used. The values of the imaginary part of the optical potential that best fit the experimental data are in good agreement with the predicted values. No strong conclusion regarding the real part of the potential was possible. Absorption and total elastic scattering cross sections for Be, C, Al, and Cu are presented. The total elastic scattering cross sections from this experiment disagree with Wikner's for π−-nucleus scattering.

1 data table

No description provided.


Elastic Proton-Proton Scattering at 1.35, 2.1, and 2.9 BeV

Fujii, T. ; Chadwick, G.B. ; Collins, G.B. ; et al.
Phys.Rev. 128 (1962) 1836-1841, 1962.
Inspire Record 944980 DOI 10.17182/hepdata.624

As a part of our program to study p−p collisions at Cosmotron energies, the differential cross sections for elastic scattering were measured at five laboratory angles between 2.3° and 17° for each incident energy. Total elastic cross sections obtained by integration are 21.4±1.4, 17.0±0.8, and 14.7±0.7 mb at 1.35, 2.1, and 2.9 BeV, respectively. The angular distribution as a function of the momentum transfer, exhibits a forward diffraction peak, the width of which shrinks slightly as the incident energy increases. The experimental results were fitted by simple optical model calculations and also compared with the predictions of the composite particle theory of Chew and Frautschi.

4 data tables

No description provided.

More…

Nucleon-Nucleon Total Cross Sections from 1.1 to 8 GeV/c

Bugg, D.V. ; Salter, D.C. ; Stafford, G.H. ; et al.
Phys.Rev. 146 (1966) 980-992, 1966.
Inspire Record 50610 DOI 10.17182/hepdata.408

Measurements have been made of the total cross sections σ(p−p) and σ(p−d) over the laboratory momentum range 1.1 to 8 GeV/c, with relative errors of 0.1%. The absolute accuracies of these cross sections are limited to 0.3% by lack of information which will allow the Coulomb-nuclear interference to be calculated accurately. Values of the total cross sections σ(p−n) and σ(I=0) are deduced by assuming the Glauber correction. Structure is observed in σ(p−p) near a mass value of 2.75 GeV/c2; its interpretation is discussed. σ(I=0) rises rapidly in the range 2.3 to 2.9 GeV/c2, and this is attributed to the onset of strong inelastic scattering.

2 data tables

No description provided.

No description provided.


Total cross-sections of K+- mesons and anti-protons on nucleons up to 3.3-GeV/c

Abrams, R.J. ; Cool, R.L. ; Giacomelli, G. ; et al.
Phys.Rev.D 1 (1970) 1917-1935, 1970.
Inspire Record 55141 DOI 10.17182/hepdata.25091

Total cross sections of K± and p¯ on hydrogen and deuterium were measured in a standard transmission experiment with statistical precisions of the order of 0.05-0.25%. Data were obtained in the momentum range 2.45-3.30 GeV/c for K−N, 1.55-3.30 GeV/c for K+N, and 1.00-3.30 GeV/c for p¯N. Cross sections for the pure isotopic spin states are obtained using a procedure for the deuterium data which takes into account Fermi motion and the shadow effect. Evidence for the following new structures was found: Y1*(2455), Y1*(2620), Y0*(2585), Z1*(2150), Z1*(2500), π1*(2290), π1*(2350), and π0*(2375).

5 data tables
More…

Scattering of antineutrons by protons

Franklin, A.D. ; Socash, R.R. ;
Phys.Rev. 184 (1969) 1413-1414, 1969.
Inspire Record 62285 DOI 10.17182/hepdata.5406

The total and elastic cross sections for antineutrons on protons have been measured for antineutron momenta from 0.5 to 2.5 GeV/c. The results are in agreement with previous p¯p data at these momenta.

2 data tables

'1'. '2'. '3'.

No description provided.


THE REACTION K0(L) p ---> K0(S) p FROM 1.3-GeV/c TO 8.0-GeV/c

Brody, A.D. ; Johnson, William B. ; Kehoe, B. ; et al.
Phys.Rev.Lett. 26 (1971) 1050, 1971.
Inspire Record 67120 DOI 10.17182/hepdata.21557

Total and differential cross sections are presented for the reaction KL 0p→KS 0p from 1.3 to 8.0 GeVc as measured in an exposure of the Stanford Linear Accelerator Center 40-in. hydrogen bubble chamber to a neutral beam. The forward points of dσ(KL 0p→KS 0p)dt together with K+n and K−n total cross sections are used to determine the intercept of the effective Regge trajectory, α(0)=0.47±0.09, and the regeneration phase ϕf=−43∘±8∘.

7 data tables

No description provided.

FULL T REGION.

FULL T REGION.

More…

Bubble Chamber Study of Photoproduction by 2.8-GeV and 4.7-GeV Polarized Photons. 1. Cross-Section Determinations and Production of rho0 and Delta++ in the Reaction gamma p --> p pi+ pi-

Ballam, Joseph ; Chadwick, G.B. ; Gearhart, R. ; et al.
Phys.Rev.D 5 (1972) 545, 1972.
Inspire Record 67165 DOI 10.17182/hepdata.3635

Photoproduction is studied at 2.8 and 4.7 GeV using a linearly polarized monoenergetic photon beam in a hydrogen bubble chamber. We discuss the experimental procedure, the determination of channel cross sections, and the analysis of the channel γp→pπ+π−. A model-independent analysis of the ρ0-decay angular distribution allows us to measure nine independent density-matrix elements. From these we find that the reaction γp→pρ0 proceeds almost completely through natural parity exchange for squared momentum transfers |t|<1 GeV2 and that the ρ production mechanism is consistent with s-channel c.m. helicity conservation for |t|<0.4 GeV2. A cross section for the production of π+π− pairs in the s-channel c.m. helicity-conserving p-wave state is determined. The ρ mass shape is studied as a function of momentum transfer and is found to be inconsistent with a t-independent Ross-Stodolsky factor. Using a t-dependent parametrization of the ρ0 mass shape we derive a phenomenological ρ0 cross section. We compare our phenomenological ρ0 cross section with other experiments and find good agreement for 0.05<|t|<1 GeV2. We discuss the discrepancies in the various determinations of the forward differential cross section. We study models for ρ0 photoproduction and find that the Söding model best describes the data. Using the Söding model we determine a ρ0 cross section. We determine cross sections and nine density-matrix elements for γp→Δ++π−. The parity asymmetry for Δ++ production is incompatible with simple one-pion exchange. We compare Δ++ production with models.

20 data tables

FROM QUOTED TOPOLOGICAL CROSS SECTIONS. 1.44 GEV CROSS SECTION PUBLISHED PREVIOUSLY.

No description provided.

NO TMIN CORRECTION HAS BEEN MADE.

More…

Total hadronic cross-section of gamma rays in hydrogen in the energy range 0.265-GeV to 4.215-GeV

Armstrong, T.A. ; Hogg, W.R. ; Lewis, G.M. ; et al.
Phys.Rev.D 5 (1972) 1640-1652, 1972.
Inspire Record 67298 DOI 10.17182/hepdata.22462

The total cross section of γ rays in hydrogen resulting in hadron production, σT, has been measured over the energy range 265-4215 MeV. A tagging system with narrow energy bins was employed. Structure in the resonance region followed by a steady fall with energy has been observed and the results are analyzed. The forward amplitude of γ-proton scattering is evaluated, and its behavior in the Argand diagram studied as a function of energy. The relationships of the measurements to Regge-pole theory and the vector-dominance model are detailed.

2 data tables

No description provided.

SPIN AVERAGED FORWARD COMPTON SCATTERING AMPLITUDE. IM(AMP) WAS CALCULATED VIA THE OPTICAL THEOREM FROM A SMOOTH FIT TO THE DATA, AND USED IN THE DISPERSION RELATION TO CALCULATE RE(AMP). AT THRESHOLD THE THOMSON AMPLITUDE IS -3.0 MUB*GEV.