Summary data on elastic $pp$ and $pd$ scattering at small angles and the real part of the $pn$-scattering amplitude in the energy interval 1-10 BeV

Dalkhazhav, N. ; Devinski, P.A. ; Zayachki, V.I. ; et al.
Sov.J.Nucl.Phys. 8 (1969) 196-202, 1969.
Inspire Record 1392874 DOI 10.17182/hepdata.69719

None

32 data tables

RE/IM MEASUREMENTS TAKEN FROM TABLE 1 OF KIRILLOVA 65.

TABLE 1 (REF. 1 ).

RE/IM MEASUREMENTS TAKEN FROM TABLE 1 OF KIRILLOVA 65.

More…

The near-threshold production of Phi mesons in p p collisions.

Hartmann, M. ; Maeda, Y. ; Keshelashvilli, I. ; et al.
Phys.Rev.Lett. 96 (2006) 242301, 2006.
Inspire Record 713863 DOI 10.17182/hepdata.41806

The pp->pp phi reaction has been studied at the Cooler Synchrotron COSY-Juelich, using the internal beam and ANKE facility. Total cross sections have been determined at three excess energies epsilon near the production threshold. The differential cross section closest to threshold at epsilon=18.5 MeV exhibits a clear S-wave dominance as well as a noticeable effect due to the proton-proton final state interaction. Taken together with data for pp omega-production, a significant enhancement of the phi/omega ratio of a factor 8 is found compared to predictions based on the Okubo-Zweig-Iizuka rule.

7 data tables

K+ K- invariant mass distribution.

Total cross sections.

Differential decay distribution of the K+ in the rest frame of the PHI-meson w.r.t. the beam.

More…

Exclusive eta production in proton-proton reactions.

Balestra, F. ; Bedfer, Y. ; Bertini, R. ; et al.
Phys.Rev.C 69 (2004) 064003, 2004.
Inspire Record 653991 DOI 10.17182/hepdata.25225

Differential cross sections for the exclusive reaction p⃗p→ppη observed via the η→π+π−π0 decay channel have been measured at Tbeam=2.15GeV, 2.50GeV, and 2.85GeV (excess energies 324MeV, 412MeV, and 554MeV). The influence of the N(1535)S11 resonance is clearly seen in the invariant mass and momentum dependent differential cross sections. The extracted resonance parameters are compatible with existing data. No significant evidence for further resonance contributions has been found. In addition, angular distributions of the ppη final state have been measured. The polar angle distribution of the η shows an anisotropy with respect to the beam axis for the lowest beam energy, which vanishes for the higher energies. The sign of this anisotropy is negative and expected to be sensitive to the dominant production mechanism. In contrast, the proton polar angle in the pp rest frame tends to be more strongly aligned along the beam axis with increasing beam energy. The analyzing power Ay is compatible with zero for all beam energies.

8 data tables

Differential cross section for incident kinetic energy 2.15 GeV, divided by the phase space as a function of the invariant mass of the ETA and the final state proton with the lower value of ABS(T). This is proportional to the square of the decay matrix element ABS(M)**2 of the P-ETA system.

Differential cross section for incident kinetic energy 2.50 GeV, divided by the phase space as a function of the invariant mass of the ETA and the final state proton with the lower value of ABS(T). This is proportional to the square of the decay matrix element ABS(M)**2 of the P-ETA system.

Differential cross section for incident kinetic energy 2.85 GeV, divided by the phase space as a function of the invariant mass of the ETA and the final state proton with the lower value of ABS(T). This is proportional to the square of the decay matrix element ABS(M)**2 of the P-ETA system.

More…

Measurements of the differential cross-section of the reaction p p ---> d pi+ from 3.0 to 5.0 gev/c

Anderson, H.L. ; Larson, D.A. ; Myrianthopoulos, L.C. ; et al.
Phys.Rev.D 9 (1974) 580-596, 1974.
Inspire Record 93111 DOI 10.17182/hepdata.21941

A measurement of the complete differential cross section for the reaction pp→dπ+ at 3.00, 3.20, 3.43, 3.65, 3.83, 4.00, 4.20, and 5.05 GeVc incident proton momentum has been made in an attempt to establish the role of the Δ (1950) in this region. The data show that the previously observed enhancement in the forward cross section between 3 and 4 GeVc due to this isobar is an effect which damps out quickly as the production angle departs from zero degrees, in contrast with the well-known enhancement at 1.35 GeVc, which is evident at all angles. In particular, the one-pion-exchange model is in poor agreement with the extended set of data. A detailed description is given of a novel proportional-wire-chamber system which facilitated the selection of this rather rare reaction from a very high competing background.

3 data tables

Axis error includes +- 6/6 contribution.

Axis error includes +- 6/6 contribution.

No description provided.