Experiments at VEPP-2M with SND detector

The SND collaboration Achasov, M.N. ; Aulchenko, V.M. ; Baru, S.E. ; et al.
BINP-98-65, 1998.
Inspire Record 476386 DOI 10.17182/hepdata.50374

Short overview of experiments with SND detector at VEPP-2M e^+e^- collider in the energy range 2E = 400 - 1400 MeV and preliminary results of data analysis are presented.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Charged Particle Production in Proton-, Deuteron-, Oxygen- and Sulphur-Nucleus Collisions at 200 GeV per Nucleon

The NA35 collaboration Alber, T. ; Appelshauser, H. ; Bachler, J. ; et al.
Eur.Phys.J.C 2 (1998) 643-659, 1998.
Inspire Record 450611 DOI 10.17182/hepdata.34289

The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse momentum spectra of negatively charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and central nucleus-nucleus collisions. The mean transverse momentum is almost constant in the vicinity of midrapidity and shows little variation with the target and projectile masses. The average number of produced negatively charged hadrons per participant baryon increases slightly from p+p, p+A to central S+S,Ag collisions.

43 data tables

No description provided.

No description provided.

The value YRAP = 4PI is the extrapolation for 4PI acceptance.

More…

Strangeness in nuclear collisions

Gazdzicki, Marek ; Rohrich, Dieter ;
Z.Phys.C 71 (1996) 55-64, 1996.
Inspire Record 420462 DOI 10.17182/hepdata.13638

Data on the mean multiplicity of strange hadrons produced in minimum bias proton--proton and central nucleus--nucleus collisions at momenta between 2.8 and 400 GeV/c per nucleon have been compiled. The multiplicities for nucleon--nucleon interactions were constructed. The ratios of strange particle multiplicity to participant nucleon as well as to pion multiplicity are larger for central nucleus--nucleus collisions than for nucleon--nucleon interactions at all studied energies. The data at AGS energies suggest that the latter ratio saturates with increasing masses of the colliding nuclei. The strangeness to pion multiplicity ratio observed in nucleon--nucleon interactions increases with collision energy in the whole energy range studied. A qualitatively different behaviour is observed for central nucleus--nucleus collisions: the ratio rapidly increases when going from Dubna to AGS energies and changes little between AGS and SPS energies. This change in the behaviour can be related to the increase in the entropy production observed in central nucleus-nucleus collisions at the same energy range. The results are interpreted within a statistical approach. They are consistent with the hypothesis that the Quark Gluon Plasma is created at SPS energies, the critical collision energy being between AGS and SPS energies.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Mass identified particle production in proton anti-proton collisions at s**(1/2) = 300-GeV, 540-GeV, 1000-GeV, and 1800-GeV

The E735 collaboration Alexopoulos, T. ; Allen, C. ; Anderson, E.W. ; et al.
Phys.Rev.D 48 (1993) 984-997, 1993.
Inspire Record 363171 DOI 10.17182/hepdata.22669

The yields and average transverse momenta of pions, kaons, and antiprotons produced at the Fermilab p¯p collider at s=300, 540, 1000, and 1800 GeV are presented and compared with data from the energies reached at the CERN collider. We also present data on the dependence of average transverse momentum 〈pt〉 and particle ratios as a function of charged particle density dNcdη; data for particle densities as high as six times the average value, corresponding to a Bjorken energy density 6 GeV/fm3, are reported. These data are relevant to the search for quark-gluon phase of QCD.

11 data tables

PT RANGE FROM 0 TO INFINITY.

PT RANGE FROM 0 TO INFINITY.

No description provided.

More…

Neutral kaon and lambda production in electron - positron annihilation at 29-GeV and the Z boson resonance

Fordham, C. ;
SLAC-0374, 1990.
Inspire Record 300503 DOI 10.17182/hepdata.18797

None

26 data tables

No description provided.

No description provided.

No description provided.

More…

Strange Meson Production in $e^+ e^-$ Annihilation

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 47 (1990) 167-180, 1990.
Inspire Record 284251 DOI 10.17182/hepdata.15160

The full TASSO data have been used to study the inclusive production of strange mesons ine+e− annihilations. Differential and total cross sections have been measured in the centre of mass energy range 14 to 44 GeV forK0,\(\bar K^0\) and 34.5 to 44 GeV forK*± (892). We have investigated the strange meson production properties in jets by studying the rapidity andpt2 distributions as well as the evolution of the multiplicities as a function of the event sphericity. We find no evidence that the strange meson yields increase with increasing sphericity faster than the total charged multiplicity.

10 data tables

Scaled differential cross sections for K0 production. Errors are statistical and systematic combined.

Scaled differential cross section for K0 production. Errors are statistical and systematic combined.

Scaled differential cross section for K0 production. Errors are statistical and systematic combined.

More…

Charged Multiplicity Distributions and Correlations in e+ e- Annihilation at PETRA Energies

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 45 (1989) 193, 1989.
Inspire Record 277658 DOI 10.17182/hepdata.1499

We report on an analysis of the multiplicity distributions of charged particles produced ine+e− annihilation into hadrons at c.m. energies between 14 and 46.8 GeV. The charged multiplicity distributions of the whole event and single hemisphere deviate significantly from the Poisson distribution but follow approximate KNO scaling. We have also studied the multiplicity distributions in various rapidity intervals and found that they can be well described by the negative binomial distribution only for small central intervals. We have also analysed forward-backward multiplicity correlations for different energies and selections of particle charge and shown that they can be understood in terms of the fragmentation properties of the different quark flavours and by the production and decay of resonances. These correlations are well reproduced by the Lund string model.

29 data tables

RATIO of MULT/DISPERSION for the whole event to that for the single hemisphere data.

Complete event multiplicities.

Single hemisphere multiplicities.

More…

A Detailed Study of Strange Particle Production in $e^+ e^-$ Annihilation at High-energy

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Kirschfink, F.J. ; et al.
Z.Phys.C 27 (1985) 27, 1985.
Inspire Record 205119 DOI 10.17182/hepdata.16068

Results onK0 and Λ production ine+e− annihilation at c.m. energies of 14, 22 and 34 GeV are presented. The shape of theK0 and Λ differential cross sections are very similar to each other and to those of π±,K± and\(p(\bar p)\). Scaling violations are observed forK0 production. We obtain a value for the probability to produce strange quark-antiquark pairs relative to that to produce up or down quark-antiquark pairs of 0.35±0.02±0.05. The value ofRh=σ(e+e-→hX)/σµµ is shown to rise steadily with c.m. energy for all particle species. At 34 GeV we find 1.48±0.05K0 and 0.31±0.03 Λ per event. We have searched for possible Λ polarization. The production ofK0's and Λ's in jets is examined as a function ofpT2 and rapidity and compared to that of all charged particles; the yields in two and three jets are also investigated. Results are presented from events with two baryons\((\Lambda ,\bar \Lambda ,por\bar p)\) observed.

18 data tables

No description provided.

No description provided.

No description provided.

More…

Charged Particle and Neutral Kaon Production in e+ e- Annihilation at PETRA

The JADE collaboration Bartel, W. ; Becker, L. ; Bawbery, C. ; et al.
Z.Phys.C 20 (1983) 187, 1983.
Inspire Record 190818 DOI 10.17182/hepdata.16288

None

5 data tables

MEAN CHARGED MULTIPLICITY.

MEAN CHARGED MULTIPLICITY AFTER SUBTRACTING SECONDARIES FROM KS AND LAMBDA DECAY, PLUS LEPTONS FROM HEAVY QUARK WEAK DECAYS ARE FROM DALITZ DECAYS. I.E. NUMBER OF CHARGED HADRONS HAVING LIFETIME > 10**-9 SEC.

INVERSE RELATIVE DISPERSION.

More…

Inclusive $K^0$ Production in $e^+ e^-$ Annihilation for 9.3-{GeV} $<\sqrt{s}<$ 31.6-{GeV}

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Grigull, R. ; et al.
Phys.Lett.B 104 (1981) 79-83, 1981.
Inspire Record 165122 DOI 10.17182/hepdata.6716

Results on inclusive K s 0 production in e + e − annihilation at mean center-of-mass energies of 9.4, 12.0 and 30 GeV are presented. The ratio R (K 0 ) = 2 σ (K s 0 )/ σ μμ rises from 3.10 ± 0.75 at √ s = 9.4 GeV to 5.6 ± 1.2 at √ s = 30 GeV, corresponding to an approximately constant K 0 /charged-particle ratio of 0.12 ± 0.02. A similar ratio for K 0 / charged particle is observed for direct hadronic decays of the ϒ.

7 data tables

SYSTEMATIC ERROR INCLUDED.

NUMBER OF K0 PER HADRONIC EVENT. AUTHORS ALSO USE MULTIPLICITY TO ESTIMATE NUMBER OF K0 PER CHARGED PARTICLE.

INCLUDING EARLIER DATA.

More…