Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-Pb collisions at $\mathbf{\sqrt{{\textit s}_{\rm NN}}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 760 (2016) 720-735, 2016.
Inspire Record 1415274 DOI 10.17182/hepdata.73749

The production of charged pions, kaons and (anti)protons has been measured at mid-rapidity ($-0.5 y 0$) in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV using the ALICE detector at the LHC. Exploiting particle identification capabilities at high transverse momentum ($p_{\rm T}$), the previously published $p_{\rm T}$ spectra have been extended to include measurements up to 20 GeV/$c$ for seven event multiplicity classes. The $p_{\rm T}$ spectra for pp collisions at $\sqrt{s}=7$ TeV, needed to interpolate a pp reference spectrum, have also been extended up to 20 GeV/$c$ to measure the nuclear modification factor ($R_{\rm pPb}$) in non-single diffractive p-Pb collisions. At intermediate transverse momentum ($2 p_{\rm T} 10$\,GeV/$c$) the proton-to-pion ratio increases with multiplicity in p-Pb collisions, a similar effect is not present in the kaon-to-pion ratio. The $p_{\rm T}$ dependent structure of such increase is qualitatively similar to those observed in pp and heavy-ion collisions. At high $p_{\rm T}$ ($>10$ GeV/$c$), the particle ratios are consistent with those reported for pp and Pb-Pb collisions at the LHC energies. At intermediate $p_{\rm T}$ the (anti)proton $R_{\rm pPb}$ shows a Cronin-like enhancement, while pions and kaons show little or no nuclear modification. At high $p_{\rm T}$ the charged pion, kaon and (anti)proton $R_{\rm pPb}$ are consistent with unity within statistical and systematic uncertainties.

13 data tables

pT-differential invariant yield of charged pions in p-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV, measured for different V0A multiplicity classes. The first uncertainty is statistical, the second one is the total systematic uncertainty, while the third one is the uncorrelated systematic uncertainty which is multiplicity dependent.

pT-differential invariant yield of charged pions in p-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV, measured for NSD events. The first uncertainty is statistical, the second one is the total systematic uncertainty, while the third one is the uncorrelated systematic uncertainty which is multiplicity dependent.

pT-differential invariant yield of charged kaons in p-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV, measured for different V0A multiplicity classes. The first uncertainty is statistical, the second one is the total systematic uncertainty, while the third one is the uncorrelated systematic uncertainty which is multiplicity dependent.

More…

The inclusive single-particle spectra of pi-, K0(s) and Lambda in proton proton collisions at 19-GeV/c

The Scandinavian Bubble Chamber collaboration Boeggild, H. ; Dahl-Jensen, E. ; Hansen, K.H. ; et al.
Nucl.Phys.B 57 (1973) 77-99, 1973.
Inspire Record 84068 DOI 10.17182/hepdata.32535

Data on the inclusive production spectra of K S 0 and Λ from proton-proton collisions at 19 GeV are presented and discussed in connection with the earlier studied inclusive π − production spectrum. The three single-particle spectra are compared with a crude two-center thermal model for the average radiation from the pp collisions.

1 data table

No description provided.