Two-pion Bose-Einstein correlations in central PbPb collisions at sqrt(s_NN) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 696 (2011) 328-337, 2011.
Inspire Record 881884 DOI 10.17182/hepdata.56743

The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.

0 data tables match query

Charged Particle Correlations in $\bar{P} P$ Collisions at c.m. Energies of 200-{GeV}, 546-{GeV} and 900-{GeV}

The UA5 collaboration Ansorge, R.E. ; Åsman, B. ; Booth, C.N. ; et al.
Z.Phys.C 37 (1988) 191-213, 1988.
Inspire Record 263399 DOI 10.17182/hepdata.15683

We present data on two-particle pseudorapidity and multiplicity correlations of charged particles for non single-diffractive\(p\bar p - collisions\) at c.m. energies of 200, 546 and 900 GeV. Pseudorapidity correlations interpreted in terms of a cluster model, which has been motivated by this and other experiments, require on average about two charged particles per cluster. The decay width of the clusters in pseudorapidity is approximately independent of multiplicity and of c.m. energy. The investigations of correlations in terms of pseudorapidity gaps confirm the picture of cluster production. The strength of forward-backward multiplicity correlations increases linearly with ins and depends strongly on position and size of the pseudorapidity gap separating the forward and backward interval. All our correlation studies can be understood in terms of a cluster model in which clusters contain on average about two charged particles, i.e. are of similar magnitude to earlier estimates from the ISR.

0 data tables match query