Measurements of $Z\gamma$ and $Z\gamma\gamma$ production in $pp$ collisions at $\sqrt{s}=$ 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 112002, 2016.
Inspire Record 1448301 DOI 10.17182/hepdata.72823

The production of $Z$ bosons with one or two isolated high-energy photons is studied using $pp$ collisions at $\sqrt{s}$ = 8 TeV. The analyses use a data sample with an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS detector during the 2012 LHC data taking. The $Z\gamma$ and $Z\gamma\gamma$ production cross sections are measured with leptonic ($e^{+}e^{-}$, $\mu^{+}\mu^{-}$, $\nu\bar{\nu}$) decays of the $Z$ boson, in extended fiducial regions defined in terms of the lepton and photon acceptance. They are then compared to cross-section predictions from the Standard Model, where the sources of the photons are radiation off initial-state quarks and radiative $Z$-boson decay to charged leptons, and from fragmentation of final-state quarks and gluons into photons. The yields of events with photon transverse energy $E_T >$ 250 GeV from $\ell^{+}\ell^{-}\gamma$ events and with $E_T >$ 400 GeV from $\nu\bar{\nu}\gamma$ events are used to search for anomalous triple gauge-boson couplings $ZZ\gamma$ and $Z\gamma\gamma$. The yields of events with diphoton invariant mass $m_{\gamma\gamma} >$ 200 GeV from $\ell^{+}\ell^{-}\gamma\gamma$ events and with $m_{\gamma\gamma} > $ 300 GeV from $\nu\bar{\nu}\gamma\gamma$ events are used to search for anomalous quartic gauge-boson couplings $ZZ\gamma\gamma$ and $Z\gamma\gamma\gamma$. No deviations from Standard Model predictions are observed and limits are placed on parameters used to describe anomalous triple and quartic gauge-boson couplings.

11 data tables match query

Measured integrated cross sections for the $Z\gamma$ process for charged lepton final states at $\sqrt{s} = 8$ TeV in the extended fiducial regions defined in the paper, table 5. The parton-to-particle correction factors are also shown, which are defined as the ratio of the cross sections at parton-level to the cross sections at particle-level.

Measured integrated cross sections for the $Z\gamma$ process for neutrino final states at $\sqrt{s} = 8$ TeV in the extended fiducial regions defined in the paper, table 5. The parton-to-particle correction factors are also shown, which are defined as the ratio of the cross sections at parton-level to the cross sections at particle-level.

Measured integrated cross sections for the $Z\gamma\gamma$ process for charged lepton final states at $\sqrt{s} = 8$ TeV in the extended fiducial regions defined in the paper, table 5. The parton-to-particle correction factors are also shown, which are defined as the ratio of the cross sections at parton-level to the cross sections at particle-level.

More…

Version 2
Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at $\sqrt{s}=8$ TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 112, 2014.
Inspire Record 1306615 DOI 10.17182/hepdata.65179

Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV. The analysis is performed in the $H \rightarrow \gamma\gamma$ decay channel using 20.3 fb$^{-1}$ of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The $pp\rightarrow H \rightarrow \gamma\gamma$ fiducial cross section is measured to be $43.2 \pm 9.4 (stat) {}^{+3.2}_{-2.9} (syst) \pm 1.2 (lumi)$ fb for a Higgs boson of mass 125.4 GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations.

57 data tables match query

Measured differential cross section with associated uncertainties as a function of transverse momentum of diphoton system. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of transverse momentum of diphoton system. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of absolute rapidity of diphoton system. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

More…

Measurements of four-lepton production in $pp$ collisions at $\sqrt{s}=$ 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 753 (2016) 552-572, 2016.
Inspire Record 1394865 DOI 10.17182/hepdata.18593

The four-lepton ($4\ell$, $\ell = e, \mu$) production cross section is measured in the mass range from 80 to 1000 GeV using 20.3 fb$^{-1}$ of data in $pp$ collisions at $\sqrt{s}=8$ TeV collected with the ATLAS detector at the LHC. The $4\ell$ events are produced in the decays of resonant $Z$ and Higgs bosons and the non-resonant $ZZ$ continuum originating from $q\bar q$, $gg$, and $qg$ initial states. A total of 476 signal candidate events are observed with a background expectation of $26.2 \pm 3.6$ events, enabling the measurement of the integrated cross section and the differential cross section as a function of the invariant mass and transverse momentum of the four-lepton system. In the mass range above $180$ GeV, assuming the theoretical constraint on the $q\bar q$ production cross section calculated with perturbative NNLO QCD and NLO electroweak corrections, the signal strength of the gluon-fusion component relative to its leading-order prediction is determined to be $\mu_{gg}=2.4 \pm 1.0 (stat.) \pm 0.5 (syst.)\pm 0.8 (theory)$.

5 data tables match query

The measured differential cross-section distributions in unit of fb/TeV of $m_{4\ell}$ unfolded into the fiducial phase space, and compared to theory predictions. The first uncertainty is statistical, the second is systematic uncertainties.

The measured differential cross-section distributions in unit of fb/TeV of $p_{T}^{4\ell}$ unfolded into the fiducial phase space, and compared to theory predictions. The first uncertainty is statistical, the second is systematic uncertainties.

Measured cross sections in the fiducial phase space ($\sigma^\mathrm{fid}$) and extended phase space ($\sigma^\mathrm{ext}$), compared to their SM predictions. One should note that the non-resonant $gg$-induced signal cross section is only calculated at LO approximation.

More…

Measurement of the electroweak production of dijets in association with a Z-boson and distributions sensitive to vector boson fusion in proton-proton collisions at sqrt(s) = 8 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 04 (2014) 031, 2014.
Inspire Record 1279489 DOI 10.17182/hepdata.62729

Measurements of fiducial cross sections for the electroweak production of two jets in association with a Z-boson are presented. The measurements are performed using 20.3 inverse femtobarns of proton-proton collision data collected at a centre-of-mass energy of sqrt(s)=8 TeV by the ATLAS experiment at the Large Hadron Collider. The electroweak component is extracted by a fit to the dijet invariant mass distribution in a fiducial region chosen to enhance the electroweak contribution over the dominant background in which the jets are produced via the strong interaction. The electroweak cross sections measured in two fiducial regions are in good agreement with the Standard Model expectations and the background-only hypothesis is rejected with significance above the 5 sigma level. The electroweak process includes the vector boson fusion production of a Z-boson and the data are used to place limits on anomalous triple gauge boson couplings. In addition, measurements of cross sections and differential distributions for inclusive Z-boson-plus-dijet production are performed in five fiducial regions, each with different sensitivity to the electroweak contribution. The results are corrected for detector effects and compared to predictions from the SHERPA and POWHEG event generators.

23 data tables match query

Unfolded normalised differential Z+2j cross section as a function of dijet invariant mass in the baseline region.

Unfolded normalised differential Z+2j cross section as a function of dijet invariant mass in the search region.

Unfolded normalised differential Z+2j cross section as a function of the rapidity separation between the leading jets in the baseline region.

More…