A Determination of electroweak parameters from Z0 ---> mu+ mu- (gamma)

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 247 (1990) 473-480, 1990.
Inspire Record 297172 DOI 10.17182/hepdata.29622

We have measured the partial width and forward-backward charge asymmetry for the reaction e + e - →Z 0 →μ + μ - (γ). We obtain a partial width Γ μμ of 83.3±1.3(stat)±0.9(sys) MeV and the following values for the vector and axial vector couplings: g v =−0.062 −0.015 +0.020 and g A =−0.497 −0.005 +0.005 . From our measurement of the partial width and the mass of the Z 0 boson we determine the effective electroweak mixing angle, sin 2 θ w =0.232±0.005, and the neutral current coupling strength parameter, ϱ =0.998±0.016.

4 data tables

No description provided.

Forward backward charge asymmetry.

No description provided.

More…

Measurement of $e^+ e^- \to \mu^+ \mu^-$: A Test of Electroweak Theories

The Mark-J collaboration Adeva, B. ; Becker, U. ; Becker-Szendy, R. ; et al.
Phys.Rev.Lett. 55 (1985) 665, 1985.
Inspire Record 214607 DOI 10.17182/hepdata.3237

We use the reaction e+e−→μ+μ−, in the Mark J detector at the DESY high-energy e+e− collider PETRA, to test the standard electroweak theory and find good agreement. We also set limits on the parameters of several extended gauge theories.

6 data tables

CROSS SECTION MEASUREMENT RELATIVE TO PREDICTED QED CROSS SECTION.

FORWARD-BACKWARD ASYMMETRY. THE SYSTEMATIC ERROR IN THE ASYMMETRY IS <0.5 PCT.

ANGULAR DISTRIBUTIONS NOT GIVEN IN PAPER. SUPPLIED BY E.DEFFUR.

More…

A Summary of Recent Experimental Results From Mark-$J$: High-energy $e^+ e^-$ Collisions at {PETRA}

The Mark-J collaboration Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rept. 109 (1984) 131, 1984.
Inspire Record 196567 DOI 10.17182/hepdata.30997

None

6 data tables

DATA ARE CORRECTED FOR TWO-PHOTON AND TAU PRODUCTION EFFECTS, ACCEPTANCE AND QED RADIATIVE EFFECTS UP TO ORDER ALPHA**3. THERE IS ALSO A 6 PCT NORMALISATION ERROR NOT INCLUDED. THE OVERALL AVERAGE VALUE OF R FROM THIS DATA IS 3.88 +- 0.04 +- 0.22.

No description provided.

SEE PRL 55, 665 FOR MOST RECENT VALUES OF THE MU+ MU- CROSS SECTIONS.

More…

Measurement of $e^+ e^- \to \mu^+ \mu^-$ Charge Asymmetry

Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rev.Lett. 48 (1982) 1701, 1982.
Inspire Record 177308 DOI 10.17182/hepdata.3116

The measurement of the nonelectromagnetic forward-backward charge asymmetry in the reaction e+e−→μ+μ− at s∼34.6 GeV and in the angular region 0<|cosθ|<0.8 is reported. With a systematic error less than 1%, we observe an asymmetry of (-8.1±2.1)%. This is in agreement with the standard electroweak theory prediction of (-7.6±0.6)%. The weak-current coupling constants are also reported.

4 data tables

SEE PRL 55, 665 FOR DISTRIBUTIONS AT 34.6 GEV AND ABOVE.

SEE PRL 55, 665 FOR CROSS SECTION VALUES AND FORWARD BACKWARD ASYMMETRY.

No description provided.

More…

Production of Sigma (1660) in K- p Interactions at 4.2-GeV/c

The Amsterdam-CERN-Nijmegen-Oxford collaboration Timmermans, Jan ; Engelen, J.J. ; Heinen, P.M. ; et al.
Nucl.Phys.B 112 (1976) 77-106, 1976.
Inspire Record 108671 DOI 10.17182/hepdata.35709

The reaction of K − p → Σ + (1660) π − was studied in a 65 event/μb sample of Σππ(π), Λππ(π) and p K 0 π − final states. The main production features observed are that the Σ (1660) decaying into Σππ is mostly Λ (1405) π and is produced only at small t ; the Σ (1660) decaying into Σπ shows both forward and backward production. This confirms earlier results suggesting the existence of two Σ (1660) resonances. An Adair analysis and a (model-dependent) moments analysis find a J = 3 2 preference for the Σ + (1660)→ Λ (1405) π + → Σ + π − π + ; a Dalitz-Miller analysis of the decay Σ + (1660) → Λ (1405) π + → Σ − π + π + determines J P to be 3 2 − . For the Σ + (1660) → Σ 0 π + a moments analysis suggests J = 3 2 . Branching ratios are determined, which (with the exceptation of the Λ (1405) π mode) are in reasonable agreement with results from formation experiments for the J P = 3 2 − Σ(1660) resonance. We compare our branching ratios with SU(3) and SU(6) predictions; the latter comparison suggests that, unless there is strong configuration mixing, Σ (1660) → Λ (1405) π , if 3 2 − , cannot be a member of the (70, 1 − ) multiplet.

4 data tables

No description provided.

PRODUCTION ANGULAR DISTRIBUTIONS OF SIG(1670D13)+ DIFFER FOR THE TWO FINAL STATES <LAM(1405S01) PI+> AND <SIGMA PION> SUGGESTING THE EXISTENCE OF TWO SIG(1660) RESONANCES.

VALUES IN STRONG DISAGREEMENT WITH THE STODOLSKY-SAKURAI MODEL PREDICTIONS.

More…