Diffraction dissociation in photoproduction at HERA

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Z.Phys.C 74 (1997) 221-236, 1997.
Inspire Record 440126 DOI 10.17182/hepdata.44667

A study is presented of the process gamma p -->XY, where there is a large rapidity gap between the systems X and Y. Measurements are made of the differential cross section as a function of the invariant mass mx of the system produced at the photon vertex. Results are presented at centre of mass energies of W_gp = 187 GeV and W_gp = 231 GeV, both where the proton dominantly remains intact and, for the first time, where it dissociates. Both the centre of mass energy and the mx~2 dependence of HERA data and those from a fixed target experiment may simultaneously be described in a triple-Regge model. The low mass photon dissociation process is found to be dominated by diffraction, though a sizable subleading contribution is present at larger masses. The pomeron intercept is extracted and found to be alpha_pom(0) = 1.068 \pm 0.016 (stat.) \pm 0.022 (syst.) \pm 0.041 (model), in good agreement with values obtained from total and elastic hadronic and photoproduction cross sections. The diffractive contribution to the process gamma p --> Xp with mx~2 / W_gp~2 < 0.05 is measured to be 22.2 \pm 0.6 (stat.) \pm 2.6 (syst.) \pm 1.7 (model) % of the total gamma p cross section at W_gp = 187 GeV.

2 data tables

Data for proton remaining intact.

Data for proton dissociating.


Neutral Kaon Production in K+ p Interactions at 32-GeV/c

The French-Soviet & CERN-Soviet collaborations Gerdyukov, L.N. ; Gorbunov, P.A. ; Klimenko, S.V. ; et al.
Nucl.Phys.B 133 (1978) 93, 1978.
Inspire Record 122185 DOI 10.17182/hepdata.35163

The production of neutral kaons in the reaction K + p → K n + X is studied at the incident momentum of 32 GeV/ c . Inclusive cross sections and single-particle distributions are presented and compared with the data at lower energies. The total inclusive cross section amounts to 7.9 ± 0.3 mb at 32 GeV/ c and is significantly higher than at lower energies due to the rapid rise of multikaon production. The fraction of K n 's coming from the decay of the K ∗ resonances stays roughly constant with energy between 8.2 and 32 GeV/ c . In the central and beam fragmentation regions the single-particle distributions reveal no energy dependence between the 16 and 32 GeV/ c data in contrast with the behaviour at lower energies, while in the proton fragmentation region the data are compatible with the trend observed at lower energies and with theoretical expectations.

3 data tables

No description provided.

No description provided.

No description provided.