Study of the Reaction $pp \to \Delta^{++} (1236) + X^0$ at 205 GeV/c

Barish, S.J. ; Derrick, M. ; Musgrave, B. ; et al.
Phys.Rev.D 12 (1975) 1260, 1975.
Inspire Record 98475 DOI 10.17182/hepdata.24865

We have studied inclusive Δ++(1236) production for |tpΔ|<1.0 (GeV/c)2 in a 50 000 picture exposure of the 30-inch hydrogen bubble chamber to a 205 GeV/c proton beam. The inclusive Δ++ cross section for one hemisphere in the center-of-mass system is (1.30±0.14) mb. The mean charged multiplicity of the system recoiling off the Δ++ is in agreement with that for laboratory π−p interactions at the same energy in the center-of-mass frame. The inclusive Δ++ production is compared to inclusive Λ0 and proton production in the same experiment. The connection between Δ++ production and diffraction is discussed. We find that not all Δ++ come from the decay of a diffractively-produced state. The PT2 distribution for the Δ++ has a slope of (10.5±0.9) (GeV/c)−2 for PT2≲0.2 (GeV/c)2. This slope, together with the decay angular distribution of the Δ++ at small momentum transfer, suggests a strong pion-exchange contribution to the inclusive process. We compare the data to the expectation of a triple-Regge model with ρ- and π-exchange contributions.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Diffraction dissociation in photoproduction at HERA

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Z.Phys.C 74 (1997) 221-236, 1997.
Inspire Record 440126 DOI 10.17182/hepdata.44667

A study is presented of the process gamma p -->XY, where there is a large rapidity gap between the systems X and Y. Measurements are made of the differential cross section as a function of the invariant mass mx of the system produced at the photon vertex. Results are presented at centre of mass energies of W_gp = 187 GeV and W_gp = 231 GeV, both where the proton dominantly remains intact and, for the first time, where it dissociates. Both the centre of mass energy and the mx~2 dependence of HERA data and those from a fixed target experiment may simultaneously be described in a triple-Regge model. The low mass photon dissociation process is found to be dominated by diffraction, though a sizable subleading contribution is present at larger masses. The pomeron intercept is extracted and found to be alpha_pom(0) = 1.068 \pm 0.016 (stat.) \pm 0.022 (syst.) \pm 0.041 (model), in good agreement with values obtained from total and elastic hadronic and photoproduction cross sections. The diffractive contribution to the process gamma p --> Xp with mx~2 / W_gp~2 < 0.05 is measured to be 22.2 \pm 0.6 (stat.) \pm 2.6 (syst.) \pm 1.7 (model) % of the total gamma p cross section at W_gp = 187 GeV.

2 data tables

Data for proton remaining intact.

Data for proton dissociating.