Precision measurements of the timelike electromagnetic form factors of pion, kaon, and proton.

The CLEO collaboration Pedlar, T.K. ; Cronin-Hennessy, D. ; Gao, K.Y. ; et al.
Phys.Rev.Lett. 95 (2005) 261803, 2005.
Inspire Record 693873 DOI 10.17182/hepdata.130708

Using 20.7 pb^-1 of e+e- annihilation data taken at sqrt{s} = 3.671 GeV with the CLEO-c detector, precision measurements of the electromagnetic form factors of the charged pion, charged kaon, and proton have been made for timelike momentum transfer of |Q^2| = 13.48 GeV^2 by the reaction e+e- to h+h-. The measurements are the first ever with identified pions and kaons of |Q^2| > 4 GeV^2, with the results F_pi(13.48 GeV^2) = 0.075+-0.008(stat)+-0.005(syst) and F_K(13.48 GeV^2) = 0.063+-0.004(stat)+-0.001(syst). The result for the proton, assuming G^p_E = G^p_M, is G^p_M(13.48 GeV^2) = 0.014+-0.002(stat)+-0.001(syst), which is in agreement with earlier results.

2 data tables

Born cross section of $e^+e^-\rightarrow h^+h^-$

Timelike form factor


Study of the Reaction $e^+ e^- \to p \bar{p}$ in the Total Energy Range 1925-{MeV} - 2180-{MeV}

Delcourt, B. ; Derado, I. ; Bertrand, J.L. ; et al.
Phys.Lett.B 86 (1979) 395-398, 1979.
Inspire Record 141565 DOI 10.17182/hepdata.27308

The e + e − → p p cross section has been measured between 1925 and 2180 MeV. About 50 p p events were detected. The total cross section decreases from 1.31 ± 0.4 nb near 1937 MeV to 0.55 ± 0.2 nb near 2135 MeV. The proton form factors | G E | 2 and | G M | 2 , assumed identical, decrease from 0.15 ± 0.05 to 0.043 ± 0.015. They are an order of magnitude higher than predicted by the well-known dipole fit. The energy range has been scanned in steps of about 2 MeV. No significant structure was found in this p p sample.

1 data table

TOTAL CROSS SECTION ASSUMING ISOTROPIC PRODUCTION. RADIATIVE CORRECTIONS CALCULATED USING PEAKING APPROXIMATION (ABOUT 20 PCT). AUTHORS ALSO QUOTE RESULTS FOR LIMITED (COSMIC RAY FREE) ACCEPTANCE AS A CHECK. FORM FACTOR DERIVED ASSUMING ELECTRIC AND MAGNETIC FORM FACTORS EQUAL IN MAGNITUDE.