Study of the $e^+e^-\to K^+K^-$ reaction in the energy range from 2.6 to 8.0 GeV

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 92 (2015) 072008, 2015.
Inspire Record 1383130 DOI 10.17182/hepdata.73784

The $e^+e^-\to K^+K^-$ cross section and charged-kaon electromagnetic form factor are measured in the $e^+e^-$ center-of-mass energy range ($E$) from 2.6 to 8.0 GeV using the initial-state radiation technique with an undetected photon. The study is performed using 469 fb$^{-1}$ of data collected with the BABAR detector at the PEP-II $e^+e^-$ collider at center-of-mass energies near 10.6 GeV. The form factor is found to decrease with energy faster than $1/E^2$, and approaches the asymptotic QCD prediction. Production of the $K^+K^-$ final state through the $J/\psi$ and $\psi(2S)$ intermediate states is observed. The results for the kaon form factor are used together with data from other experiments to perform a model-independent determination of the relative phases between single-photon and strong amplitudes in $J/\psi$ and $\psi(2S)\to K^+K^-$ decays. The values of the branching fractions measured in the reaction $e^+e^- \to K^+K^-$ are shifted relative to their true values due to interference between resonant and nonresonant amplitudes. The values of these shifts are determined to be about $\pm5\%$ for the $J/\psi$ meson and $\pm15\%$ for the $\psi(2S)$ meson.

1 data table

The $K^+K^-$ invariant-mass interval ($M_{K^+K^-}$), number of selected events ($N_{\rm sig}$) after background subtraction, detection efficiency ($\varepsilon$), ISR luminosity ($L$), measured $e^+e^-\to K^+K^-$ cross section ($\sigma_{K^+K^-}$), and the charged-kaon form factor ($|F_K|$). For the number of events and cross section. For the form factor, we quote the combined uncertainty. For the mass interval 7.5 - 8.0 GeV/$c^2$, the 90$\%$ CL upper limits for the cross section and form factor are listed.


Observation of the Dalitz Decay $\eta' \to \gamma e^+e^-$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 92 (2015) 012001, 2015.
Inspire Record 1364494 DOI 10.17182/hepdata.73672

We report the first observation of the Dalitz decay $\eta' \to \gamma e^+e^-$, based on a data sample of 1.31 billion $J/\psi$ events collected with the BESIII detector. The $\eta'$ mesons are produced via the $J/\psi \to \gamma \eta'$ decay process. The ratio $\Gamma(\eta' \to \gamma e^+ e^-)/\Gamma(\eta'\to\gamma\gamma)$ is measured to be $(2.13\pm0.09(\text{stat.})\pm0.07(\text{sys.}))\times10^{-2}$. This corresponds to a branching fraction ${\cal B}(\eta' \to \gamma e^+e^-)= (4.69 \pm0.20(\text{stat.})\pm0.23(\text{sys.}))\times10^{-4}$. The transition form factor is extracted and different expressions are compared to the measured dependence on the $e^+e^-$ invariant mass. The results are consistent with the prediction of the Vector Meson Dominance model.

2 data tables

Fitted ($n^{\text{obs}}_i$) and efficiency-corrected ($n^{\text{corr}}_i$) signal yields for the eight $M(e^+e^-)$ bins, and ratios ($r_i$). The uncertainties are statistical only.

Values of $|F|^2$ in each $M(e^+e^-)$ bin.


Measurement of the proton form factor by studying $e^{+} e^{-}\rightarrow p\bar{p}$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 91 (2015) 112004, 2015.
Inspire Record 1358937 DOI 10.17182/hepdata.73442

Using data samples collected with the BESIII detector at the BEPCII collider, we measure the Born cross section of $e^{+}e^{-}\rightarrow p\bar{p}$ at 12 center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective electromagnetic form factor of the proton is deduced under the assumption that the electric and magnetic form factors are equal $(|G_{E}|= |G_{M}|)$. In addition, the ratio of electric to magnetic form factors, $|G_{E}/G_{M}|$, and $|G_{M}|$ are extracted by fitting the polar angle distribution of the proton for the data samples with larger statistics, namely at $\sqrt{s}=$ 2232.4 and 2400.0 MeV and a combined sample at $\sqrt{s}$ = 3050.0, 3060.0 and 3080.0 MeV, respectively. The measured cross sections are in agreement with recent results from BaBar, improving the overall uncertainty by about 30\%. The $|G_{E}/G_{M}|$ ratios are close to unity and consistent with BaBar results in the same $q^{2}$ region, which indicates the data are consistent with the assumption that $|G_{E}|=|G_{M}|$ within uncertainties.

1 data table

Summary of the Born cross section $\sigma_\text{Born}$, the effective FF $|G|$, and the related variables used to calculate the Born cross sections at the different c.m.energies $\sqrt{s}$, where $N_\text{obs}$ is the number of candidate events, $N_\text{bkg}$ is the estimated background yield, $\varepsilon^\prime=\varepsilon\times(1+\delta)$ is the product of detection efficiency $\varepsilon$ and the radiative correction factor $(1+\delta)$, and $L$ is the integrated luminosity. The first errors are statistical, and the second systematic.


A Study of e+ e- ---> p anti-p using initial state radiation with BABAR

The BaBar collaboration Aubert, Bernard ; Barate, R. ; Boutigny, D. ; et al.
Phys.Rev.D 73 (2006) 012005, 2006.
Inspire Record 700020 DOI 10.17182/hepdata.41831

The e+e- -> p anti-p cross section is determined over a range of p anti-p masses, from threshold to 4.5 GeV/c^2, by studying the e+e- -> p anti-p gamma process. The data set corresponds to an integrated luminosity of 232 fb^-1, collected with the BABAR detector at the PEP-II storage ring, at an e+e- center-of-mass energy of 10.6 GeV. The mass dependence of the ratio of electric and magnetic form factors, |G_E/G_M|, is measured for p anti-p masses below 3 GeV/c^2: its value is found to be significantly larger than 1 for masses up to 2.2 GeV/c^2. We also measure J/psi -> p anti-p and psi(2S) -> p anti-p branching fractions and set an upper limit on Y(4260) -> p anti-p production and decay.

2 data tables

The cross section and effective form factor for E+ E- --> PBAR P.

The cross section and effective form factor for E+ E- --> PBAR P.


Measurement of T(20) in elastic electron deuteron scattering.

Bouwhuis, M. ; Alarcon, R. ; Botto, T. ; et al.
Phys.Rev.Lett. 82 (1999) 3755-3758, 1999.
Inspire Record 477409 DOI 10.17182/hepdata.31372

We report on a measurement of the tensor-analyzing power T20 in elastic electron-deuteron scattering in the range of four-momentum transfer from 1.8 to 3.2 fm-1. Electrons of 704 MeV were scattered from a polarized deuterium internal target. The tensor polarization of the deuterium nuclei was determined with an ion-extraction system, allowing an absolute measurement of T20. The data are described well by a non-relativistic calculation that includes the effects of meson-exchange currents.

1 data table

No description provided.


Measurement of the pseudoscalar decay constant, f(D).

The BES collaboration Bai, J.Z. ; Bardon, O. ; Blum, Ira K. ; et al.
SLAC-PUB-7147, 1996.
Inspire Record 421008 DOI 10.17182/hepdata.18760

None

2 data tables

No description provided.

No description provided.


Measurement of the neutron magnetic form-factor

Bruins, E.E.W. ; Bauer, T.S. ; den Bok, H.W. ; et al.
Phys.Rev.Lett. 75 (1995) 21-24, 1995.
Inspire Record 404379 DOI 10.17182/hepdata.19641

The ratio of neutron and proton yields at quasifree kinematics was measured for the reactions 2H(e,e′n) and 2H(e,e′p) at momentum transfers Q2=0.125, 0.255, 0.417, and 0.605(GeV/c)2, detecting the neutron and the proton simultaneously in the same scintillator array. The neutron detection efficiency was measured in situ with the 1H(γ,π+)n reaction. From this the ratio R of 2H(e,e′n) and 2H(e,e′p) cross sections was determined and used to extract the neutron magnetic form factor GMn in a model insensitive approach, resulting in an inaccuracy between 2.1% and 3.3% in GMn.

1 data table

Formfactor in nuclear magnetons.