Measurement of the magnetic form factor of the neutron

Markowitz, P. ; Finn, J.M. ; Anderson, B.D. ; et al.
Phys.Rev.C 48 (1993) R5-R9, 1993.
Inspire Record 363009 DOI 10.17182/hepdata.26000

The H2(e,e’n)1H quasielastic cross section was measured at Q2 values of 0.109, 0.176, and 0.255 (GeV/c)2. The neutron detection efficiency was determined by the associated particle technique with the H2(γ,pn) reaction for each of the three neutron kinetic energies. These H2(e,e’n) measurements of the coincidence cross sections are the first at low Q2. The cross sections are sensitive primarily to the neutron magnetic form factor GMn at these kinematics. The extracted GMn values have smaller uncertainties than previous data and are consistent with the dipole parametrization at the two higher momentum transfers; at the lowest momentum transfer, the value of GMn is ∼10% higher than the dipole value.

1 data table

No description provided.


Backward electron-deuteron scattering below 280 mev

Ganichot, D. ; Grossetete, B. ; Isabelle, D.B. ;
Nucl.Phys.A 178 (1972) 545-562, 1972.
Inspire Record 75366 DOI 10.17182/hepdata.8775

We measured the elastic and inelastic scattering of electrons on deuterium at 180° for four incident energies (70, 140, 210 and 280 MeV). The data were analysed with a technique allowing an accurate comparison between experiment and theory. We observed a good agreement for the inelastic data with the expected cross section, using the presently available models and nucleon form factors. The experimental elastic cross section is systematically larger than the predicted cross sections.

16 data tables

No description provided.

No description provided.

No description provided.

More…